K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2014

4111048576 .Còn 324=cũng bằng 1048576  . 1048576-1048576=0.                                                                   Mà 0:6=0

18 tháng 12 2018

\(Tacó:\hept{\begin{cases}2a+5⋮7\\7a+7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}5a+2⋮7\\7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}10a+4⋮7\\7⋮7\end{cases}}\)

\(\Rightarrow10a+4+7=10a+11⋮7\left(dpcm\right)\)

b, tự tương

18 tháng 12 2018

\(a,2a+5⋮7\Leftrightarrow2a+5+28a+28⋮7\)         (  vì \(28a+28⋮7\) ) 

                     \(\Leftrightarrow30a+33⋮7\)

                     \(\Leftrightarrow3.\left(10a+11\right)⋮7\)

                     \(\Leftrightarrow10a+11⋮7\)   (  vì \(\left(3;7\right)=1\) ) 

Vậy \(2a+5⋮7\Leftrightarrow10a+11⋮7\)

Câu b bn xem lại đề hộ mk chút nhé!

3 tháng 7 2015

a) Ta sẽ dùng cách cm gián tiếp:

     Cho A = 14^13 + 14^12 + .... +14 + 1

=> 14A    = 14^14 + 14^13 +...+14^2 +14

=> 14A - A = (14^14 + 14^13 +...+14^2 +14) - (14^13 + 14^12 + .... +14 + 1)

13A = 14^14 - 1

Vì 13A chia hết cho 13 nên 14^14 - 1 chia hết cho 13 (ĐPCM)

b) Tương tự như vậy: 

 Cho B = 2015^2015 + 2015^2014 + .... +2015 + 1

=> 2015B    = 2015^2016 + 2015^2015 +...+2015^2 +2015

=> 2015B - B = (2015^2016 + 2015^2015 +...+2015^2 +2015) - (2015^2015 + 2015^2014 + .... +2015 + 1)

2014B = 2015^2016 - 1

Vì 2014B chia hết cho 2014 nên 2015^2016 - 1 chia hết cho 2014 (ĐPCM)

5 tháng 7 2015

Bạn học đồng dư rồi đúng ko? ình sẽ giải theo cách đồng dư nhé :

a, 14^14đồng dư 1^14đồng dư 1(mod13) 

Suy ra 14^14 -1 đồng dư 1-1 đồng dư 0 (mod13)   (đpcm)

b, tương tự bạn nhé 2015^2016 đồng dư 1^2016 đồng dư 1 

...........rồi bạn suy ra nhé

 

  

14 tháng 7 2018

Gọi 3 số tự nhiên đó là:  \(n-1;\)\(n;\)\(n+1\)  (\(n\ge1;\)\(n\in N\))

Tích 3 số là:   \(A=\left(n-1\right)n\left(n+1\right)\)

  • Nếu:  \(n=3k\)thì:   \(A⋮3\)
  • Nếu:  \(n=3k+1\)thì:  \(n-1=3k+1-1=3k\)\(⋮\)\(3\)\(\Rightarrow\)\(A⋮3\)
  • Nếu:   \(n=3k+2\)thì:  \(n+1=3k+2+1=3k+3\)\(⋮\)\(3\)\(\Rightarrow\)\(A⋮3\)

Vậy tích 3 số tự nhoeen liên tiếp luôn chia hết cho 3

14 tháng 7 2018

trong 3 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2           (1)

trong 3 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 3               (2)

(2; 3) = 1                             (3)

(1)(2)(3) => tích của 3 số tự nhiên liên tiếp chia hết cho 6

Ta có : \(a-11b+3c⋮17\)

\(\Leftrightarrow19.\left(a-11b+3c\right)⋮17\)

\(\Leftrightarrow19a-209b+57c⋮17\)

\(\Leftrightarrow\left(17a-204b+51c\right)+\left(2a-5b+6c\right)⋮17\)

\(\Rightarrow\left(2a-5b+6c\right)⋮17\)(vì 17a - 204b + 51c đã chia hết cho 17 ) 

\(\RightarrowĐCPM\)