Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề như này đúng chưa ạ?: (x-2)(x2 + 2x+4) - 128 + x3
=x3 - 23 - 128 + x3
= 2x3 -136
( x - 2 )( x - 4 ) + 3
<=> x2 - 6x + 8 + 3
<=> ( x2 - 6x + 9 ) + 2
<=> ( x - 3 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )
a) Ta có: \(x^2-20x+101=x^2-2.x.10+10^2+1=\left(x-10\right)^2+1\)
Vì \(\left(x-10\right)^2\ge0\left(\forall x\in Z\right)\)
\(\Rightarrow\left(x-10\right)^2+1>1>0\)
Vậy x2-20x+101 >0 với mọi x
b) \(4a^2+4a+2=\left(2a\right)^2+2.2a.1+1+1=\left(2a+1\right)^2+1\)
Vì \(\left(2a+1\right)^2\ge0\left(\forall a\in Z\right)\)
\(\Rightarrow\left(2a+1\right)^2+1>1>0\)
Vậy 4a2+4a+2 > 0 với mọi a
c) \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+16+8\right)+16\)
\(=\left(x^2+10x+16\right)^2+8\left(x^2+10x+16\right)+16\)
\(=\left(x^2+10x+20\right)^2\) \(\ge0\left(\forall x\right)\)
(3x-4-x-1)(3x-4+x+1)=0
(2x-5)(4x-3)=0
2x-5 = 0 hoặc 4x-3=0
2x=5 hoặc 4x=3
x=5/2 hoặc x=3/4
\(a^4+a^3+a+1\)
\(=\left(a^4+a^3\right)+\left(a+1\right)\)
\(=a^3\left(a+1\right)+\left(a+1\right)\)
\(=\left(a+1\right)\left(a^3+1\right)\)
\(=\left(a+1\right)^2\left(a^2-a+1\right)\)
\(=\left(a+1\right)^2\left[\left(a-\frac{1}{2}\right)^2+\frac{3}{4}\right]\) \(\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=-1\)
\(P=x^2-4x+2x-8+9,5=x^2-2x+1-9+9,5=\)
\(=\left(x-1\right)^2+0,5>0\forall x\)
\(4x^2-4x+3\)
\(=\left(4x^2-4x+1\right)+2\)
\(=\left(2x+1\right)^2+2>0\)với mọi x
vậy \(4x^2-4x+3>0\)với mọi x
\(4x^2-4x+3=4x^2-4x+1+2=\left(2x-1\right)^2+2\)
Vì \(\left(2x-1\right)^2\ge0\forall x\)\(\Rightarrow4x^2-4x+3\ge2\forall x\)
hay \(4x^2-4x+3>0\forall x\)