K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chứng minh đề bài sai

Ta có 

\(2^8+2=2\left(2^7+1\right)\)

=>\(A⋮2\)

3 tháng 7 2019

A không chia hết cho 2 vì toàn bộ thừa số của A đều lẻ.

 t nghĩ đề là \(2^8+1\)

14 tháng 7 2017

\(S=\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1\)

\(=2n\left(n^2-3n-1\right)+\left(n^2-3n-1\right)-2n^3+1\)

\(=2n^3-6n^2-2n+n^2-3n-1-2n^3+1\)

\(=\left(2n^3-2n^3\right)-\left(6n^2-n^2\right)-\left(2n+3n\right)-1+1\)

\(=-5n^2-5n=-5n\left(n+1\right)⋮5\)

14 tháng 7 2017

\(S=\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1\)

\(=2n^3-6n^2-2n+n^2-3n-1-2n^3+1\)

\(=-5n^2-5n=-5n\left(n+1\right)⋮5\)

Vậy \(\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1⋮5\)

12 tháng 7 2017

\(b.\)\(\left(2n-1\right)^3-\left(2n-1\right)=\left(2n-1\right)\left[\left(2n-1\right)^2-1\right]\)

\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1^2\right]=\left(2n-1\right)\left(2n-1-1\right)\left(2n-1+1\right)\)

\(\text{Áp dụng hằng đẳng thức }\)\(a^2-b^2=\left(a-b\right)\left(a+b\right)\)

\(=\left(2n-1\right)\left(2n-2\right).2n=\left(2n-1\right).2\left(n-1\right).2n\)

\(=\left(2n-1\right).4.n\left(n-1\right)\)

\(n\left(n-1\right)⋮2\)(vì là tích 2 số liên tiếp)

\(\Rightarrow\left(2n-1\right).4.n\left(n-1\right)⋮\left(4.2\right)=8\)

\(\left(2n-1\right).4.n\left(n-1\right)⋮8\RightarrowĐPCM\)

24 tháng 6 2016

 n(2n-3)-2n(n+1) 
=2n^2-3n-2n^2-2n 
=-5n 
-5n chia het cho 5 voi moi so nguyên n vi -5 chia het cho 5 
vay n(2n-3)-2n(n+1) chia het cho 5

18 tháng 5 2017

Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\) = \(2n^2-3n-2n^2-2n\)

= \(-5n\)

\(-5⋮5\) => -5n \(⋮\) 5

=> \(n\left(2n-3\right)-2n\left(n+1\right)\) \(⋮\) 5 với mọi n \(\in\) Z

20 tháng 8 2017

n(2n-3)-2n(n+1)=2n2-3n+2n2-2n=-5n \(⋮\) 5 với mọi n

1 tháng 11 2016

mày điên à, làm gì có câu hỏi kiểu này?

1 tháng 11 2016

mày bị điên rồi hả câu hỏi thế này làm gì có người giải được