Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 3.5<4.4=4^2
5.7<6^2
...
(2n-1)(2n+1)<4n^2
Do vậy 1/4^2+1/6^2+....+1/4n^2<1/3.5+1/5.7+....+1/(2n-1)(2n+1)
=1/2[1/3-1/5+1/5-.....+1/(2n-1)-1/(2n+1)]
=1/2(1/3-1/2n+1)
=1/6-1/2(2n+1)<1/4. Vậy ta có đpcm
bn rất tốt nhưng mk rất tiếc phải ns câu này
: mấy bn ấy qa OLM cổ chơi hết rùi
Ta có: \(B=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{100^2}< \frac{1}{2\cdot4}+\frac{1}{4\cdot6}+\frac{1}{6\cdot8}+...+\frac{1}{98\cdot100}\)
\(B< \frac{1}{2}\cdot\left(\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{98\cdot100}\right)\)
\(B< \frac{1}{2}\cdot\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(B< \frac{1}{2}\cdot\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(B< \frac{1}{4}-\frac{1}{200}< \frac{1}{4}\)
\(\Rightarrow B< \frac{1}{4}\)
\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}
A=1/4^2+1/6^2+...+1/(2n)^2
=1/4(1/2^2+1/3^2+...+1/n^2)
=>A<1/4(1-1/2+1/2-1/3+...+1/n-1-1/n)
=>A<1/4(1-1/n)<1/4
a>
\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000
ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )
1/100^2<1/2
=>A<1
\(S=\dfrac{1}{2^2}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)\)
=>\(S< =\dfrac{1}{4}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\right)\)
=>\(S< =\dfrac{1}{4}\cdot\left(1-\dfrac{1}{n}\right)=\dfrac{1}{4}\cdot\dfrac{n-1}{n}< =\dfrac{1}{4}\)
Lời giải:
\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}\)
Dễ thấy:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)
\(....\)
\(\dfrac{1}{10^2}=\dfrac{1}{10.10}< \dfrac{1}{9.10}\)
\(\Rightarrow S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)
\(\Rightarrow S< 1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(\Rightarrow S< 1+1-\dfrac{1}{10}\)
\(\Rightarrow S< 2-\dfrac{1}{10}\)
\(\Rightarrow S< 2\)
\(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{100^2}\)
\(2^2A=\frac{2^2}{4^2}+\frac{2^2}{6^2}+\frac{2^2}{8^2}+...+\frac{2^2}{100^2}\)
\(4A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};.....;\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow4A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)
=> \(4A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
=>\(4A< 1-\frac{1}{50}\)
=> 4A < 1
=> A < \(\frac{1}{4}\)(đpcm)
Ta có 4^2>3.5
6^2>5.7
...
(2n-1)(2n+1)<4n^2
Do vậy 1/4^2+1/6^2+....+1/4n^2<1/3.5+1/5.7+...+1/(2n-1)(2n+1)
=1/2(1/3-1/5+1/5-...+1/2n-1-1/2n+1)
=1/2(1/3-1/2n+1)
=1/6-1/2(2n+1)<1/4 (đpcm