K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2018

\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{100-1}{100!}\)

\(=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)

\(=1-\frac{1}{100!}< 1\)

11 tháng 9 2018

=> 1/1-1/2+1/2-1/3+1/3...1/99+1/99-1/100

=>1/1-(0)-1/100

1/1-1.100

=99/100

=>1/2+2/3,...<1

8 tháng 8 2015

Tử số=1/2+2/3+3/4+...........+99/100 
=1-1/2+1-1/3+1-1/4+...........+1-1/100
=1.100-(1/2+1/3+1/4+............+1/100)
=100-(1/2+1/3+1/4+............+1/100)
=Mẫu số
=>Phép tính trên có giá trị bằng 1.

9 tháng 6 2017

sửa đề câu 1 :

\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{100-1}{100!}\)

\(=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)

\(=1-\frac{1}{100!}< 1\)

sửa đề câu 2

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=\left(1+1+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)

20 tháng 6 2019

khi cộng cac số có tử bé hơn mẫu thì tổng sẽ <1 nha 

13 tháng 11 2017

1.

\(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}\)

\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+\dfrac{4-1}{4!}+...+\dfrac{100-1}{100!}\)

\(=\dfrac{1}{1!}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+\dfrac{1}{3!}-\dfrac{1}{4!}+...+\)\(\dfrac{1}{99!}-\dfrac{1}{100!}\)

\(=1-\dfrac{1}{100!}< 1\)

13 tháng 11 2017

2.

\(\dfrac{1.2-1}{2!}+\dfrac{2.3-1}{3!}+\dfrac{3.4-1}{4!}+...+\)\(\dfrac{1}{100!}\)

Ta có:

\(=\dfrac{1.2}{2!}-\dfrac{1}{2!}+\dfrac{2.3}{3!}-\dfrac{1}{3!}+\dfrac{3.4}{4!}-\dfrac{1}{4!}+...+\)\(\dfrac{99.100}{100!}-\dfrac{1}{100}\)

\(=\left(\dfrac{1.2}{2!}+\dfrac{2.3}{3!}+\dfrac{3.4}{4!}+...+\dfrac{99.100}{100!}\right)\)\(-\left(\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{100!}\right)\)

\(=\left(1+1+\dfrac{1}{2!}+...+\dfrac{1}{98!}\right)\)\(-\left(\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{100!}\right)\)

\(=2-\dfrac{1}{99!}-\dfrac{1}{100!}< 2\)

25 tháng 7 2016

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{99}-\frac{1}{100}\)\(\left(1+\frac{1}{3}+....+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{99}+\frac{1}{100}\right)\)\(-2\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{50}\right)\)

\(\frac{1}{51}+\frac{1}{52}+....+\frac{1}{100}=-\frac{1}{2}\)

tôi xem sex

27 tháng 3 2017

Ta có:

\(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}\)

\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+\dfrac{4-1}{4!}+...+\dfrac{100-1}{100!}\)

\(=\dfrac{2}{2!}-\dfrac{1}{2!}+\dfrac{3}{3!}-\dfrac{1}{3!}+\dfrac{4}{4!}-\dfrac{1}{4!}+...+\dfrac{100}{100!}-\dfrac{1}{100!}\)

\(=\dfrac{1}{1!}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+...+\dfrac{1}{99!}-\dfrac{1}{100!}\)

\(=1-\dfrac{1}{100!}\)

\(1-\dfrac{1}{100!}< 1\)

Vậy \(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}< 1\) (Đpcm)

27 tháng 3 2017

\(\dfrac{1}{2!}\)+ \(\dfrac{2}{3!}\)+ \(\dfrac{3}{4!}\)+...+\(\dfrac{99}{100!}\)

= \((\)\(\dfrac{1}{1!}\)-\(\dfrac{1}{2!}\)\()\) + \((\)\(\dfrac{1}{2!}\)-\(\dfrac{1}{3!}\)\()\) + \((\)\(\dfrac{1}{3!}\)-\(\dfrac{1}{4!}\)\()\) +...+ \((\)\(\dfrac{1}{99!}\)-\(\dfrac{1}{100!}\)\()\)

= 1-\(\dfrac{1}{100!}\) < 1.

4 tháng 2 2019

Ta có : \(VT=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{100-1}{100!}\)

                   \(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)

                     \(=1-\frac{1}{100!}< 1\)

4 tháng 2 2019

\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\frac{4}{5!}+...+\frac{99}{100!}=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+\frac{5-1}{5!}+...+\frac{100-1}{100!}\)

                                                                           \(=\frac{2}{1.2}-\frac{1}{2!}+\frac{3}{1.2.3}-\frac{1}{3!}+\frac{4}{1.2.3.4}-\frac{1}{4!}+\frac{5}{1.2.3.4.5}-\frac{1}{5!}+...+\frac{100}{1.2...99.100}-\frac{1}{100!}\)

\(=\frac{1}{1}-\frac{1}{2!}+\frac{1}{1.2}-\frac{1}{3!}+\frac{1}{1.2.3}-\frac{1}{4!}+\frac{1}{1.2.3.4}-\frac{1}{5!}+...+\frac{1}{1.2...99}-\frac{1}{100!}\)

\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+\frac{1}{4!}-\frac{1}{5!}+...+\frac{1}{99!}-\frac{1}{100!}\)

\(=1-\frac{1}{100!}< 1\)

AH
Akai Haruma
Giáo viên
21 tháng 2 2018

Lời giải:

Ta có:

\(P=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)

\(P=\frac{2-1}{1.2}+\frac{3-1}{1.2.3}+\frac{4-1}{1.2.3.4}+...+\frac{100-1}{1.2.3....100}\)

\(P=1-\frac{1}{1.2}+\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{1.2.3}-\frac{1}{1.2.3.4}+\frac{1}{1.2.3.4}-....+\frac{1}{1.2.3...99}-\frac{1}{1.2.3.4...100}\)

\(P=1-\frac{1}{1.2.3....100}<1\)

Ta có đpcm.