K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2017

( 10n ) chia het cho ( 5n - 3 )

=> ( 5n + 5n ) chia het cho ( 5n - 3 )

=> ( 5n - 3 + 5n - 3 + 6 ) chia het cho ( 5n - 3 )

=> [ 2.(5n-3) + 6 ] chia het cho ( 5n - 3 )

Ma (5n-3) chia het cho (5n - 3 )

=> 2(5n-3) chia het cho (5n-3)

=> 6 chia het cho (5n-3)

=> 5n - 3 thuoc U(6)

=> 5n - 3 thuoc { 1; 2;3;6 }

=> 5n thuoc { 0; 3 }

=> n = 0

Vay n = 0

P/s tham khao nha

15 tháng 8 2017

1)  \(5^1+5^2+5^3+...+5^{2003}+5^{2004}=\) \(\left(5^1+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{2001}+5^{2004}\right)\)

\(=5\left(1+5^3\right)+5^2\left(1+5^3\right)+5^3\left(1+5^3\right)+...+5^{2001}\left(1+5^3\right)\)

\(=\left(1+5^3\right).\left(5+5^2+5^3+...+5^{2001}\right)\)

\(=126.\left(5+5^2+5^3+...+5^{2001}\right)⋮126\) \(\left(đpcm\right)\)

27 tháng 10 2017

chia hết mình viết là : nha

102017+8 : 72=>102017+8 chia hết cho 8 và 9

+cm 102017+8 : 8

102017+8=100...000(2017 chữ số 0)+8=100...008(2016 chữ số 0) : 8 vì 008 : 8

+cm 

+cm 102017+8 : 9

102017+8=100...000(2017 chữ số 0)+8=100...008(2016 chữ số 0) có tổng các chữ số là 1+0+0+0+0+0+...+0+8=9 : 9=>102017+8 : 9

Vì 102017+8 : 8 và 102017+8 : 9=>102017+8 chia hết cho 8.9=>102017+8 : 72

Vậy 102017+8 : 72

16 tháng 10 2017

câu này mình biết kết quả nhưng ko biết cách trình bày nên các bạn nhớ giải nguyên văn như mình mói nhé.

3 tháng 5 2016

có chia hết cho 7

20 tháng 2 2018

số đó là 333,666,999

31 tháng 8 2017

a.1111111...1 = 10^(n-1) + 10^(n-2) +....1 (gồm n số 1) 
10^n chia 9 dư 1 => 10^(n-1) = 9.k(n-1) + 1 
10^(n-1) chia 9 dư 1 => 10^(n-2) = 9.k(n-2) +1 
..... 
10 chia 9 dư 1 => 10 = 9.k1 + 1 (ở đây k1=3) 
=>11111....1 = 9.(k1 + k2 +... + k(n-1)) +(1+1+...+1) (gồm n số 1) 
= 9.A + n 
=>8n + 11111...1= 9A +9n chia hết cho 9 
b.11111111....1 (gồm 27 số 1) 
= 1111...100.....0 + 11111...10000...0 + 1111...1 
-------------------------- ----------------------- ----------- 
9chữsố1;18chữsố 0 9chữsô1;9chữsố0 9chữsô1 
=111111111 x (10^18 + 10^9 +1) 
ta có: 111111111 chia hết cho 9 (tổng các chữ số =9) 
10^18 chia 3 dư 1 
10^9 chia 3 sư 1 
=> 10^18 + 10^9 +1 chia hết cho 3 
vậy 1111.....1111 chia hết cho 27 (gồm 27 số 1)

31 tháng 8 2017

Bạn có thể làm lại không bạn 

24 tháng 11 2017

Ta thấy n ; n+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 => n.(n+1).(n+2) chia hết cho 2

Nếu n chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3

Nếu n chia 3 dư 1 => n+5 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3

Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3

Vậy n.(n+1).(n+5) chia hết cho 3

=> n.(n+1).(n+5) chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )

=> ĐPCM

k mk nha

24 tháng 11 2017

vì n ( n + 1 ) ( n + 5 ) chia hết cho 6 => n ( n + 1 ) ( n + 5 ) chia hết cho 2 ; 3

+) ta thấy n ( n + 1 ) là tích của 2 số tự nhiên liên tiếp  , mà trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn chia hết cho 2 => n ( n + 1 ) chia hết cho 2 => n ( n + 1 ) ( n + 5 ) chia hết cho 2

+) đem chia n cho 3 xảy ra 3 trường hợp về số dư : dư 0 ; dư 1 ; dư 2 

- nếu n chia cho 3 dư 0 => n chia hết cho 3 = > n ( n + 1 ) ( n + 5 ) chia hết cho 3

- nếu n chia cho 3 dư 1 => n = 3k + 1 ( k e N* )

khi đó  n + 5 = 3k + 1 + 5 = 3k + 6 = 3 ( k + 2 ) chia hết cho 3

=> n ( n + 1 ) ( n + 5 ) chia hết cho 3 

- nếu n chia cho 3 dư 2 => n = 3k + 2 ( k e N* )

khi đó n + 1 = 3k + 2 + 1 = 3k + 3 = 3 ( k + 1 ) chia hết cho 3

=> n ( n + 1 ) ( n + 5 ) chia hết cho 3

=> n ( n + 1 ) ( n + 5 ) chia hết cho 2 ; 3

mà ƯCLN( 2 ; 3 ) = 1

=> n ( n + 1 ) ( n + 5 ) chia hết cho 2 . 3

=> n ( n + 1 ) ( n + 2 ) chia hết cho 6

chúc bạn học tốt

^^

25 tháng 4 2020

1) Đặt \(A=2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)

\(=2.3+2^3.3+...+2^{99}.3\)

Vì \(3⋮3\) nên \(2.3+2^3.3+...+2^{99}.3⋮3\)

hay \(A⋮3\)(đpcm)

2) Đặt \(B=3+3^2+3^3+...+3^{1998}\)

\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{1996}+3^{1997}+3^{1998}\right)\)

\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{1996}\left(1+3+3^2\right)\)

\(=3.13+3^4.13+...+3^{1996}.13\)

\(=39+3^3.39+...+3^{1995}.39\)

Vì \(39⋮39\)nên \(39+3^3.39+...+3^{1995}.39⋮39\)

hay \(B⋮39\)(đpcm)

25 tháng 4 2020

a) 2+22+23+...+2100

=(2+22+23+24+25)+(26+27+28+29+210)+.....+(296+297+298+299+2100)

=2(1+2+22+23+24)+26(1+2+22+23+24)+....+296(1+2+22+23+24)

=2(1+2+4+8+16)+26(1+2+4+8+16)+....+296(1+2+4+8+16)

=2.31+26.31+....+296.31

=31(2+26+....+296)

=> đpcm