Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)=7.57+7^4.57+...+7^{118}.57=57\left(7+7^4+...+7^{118}\right)⋮57\)
Lời giải:
$A=(7+7^2+7^3)+(7^4+7^5+7^6)+....+(7^{118}+7^{119}+7^{120})$
$=7(1+7+7^2)+7^4(1+7+7^2)+...+7^{118}(1+7+7^2)$
$=7.57+7^4.57+...+7^{118}.57$
$=57(7+7^4+...+7^{118})\vdots 57$
Ta có đpcm.
Đặt A = 35371 + 572016 + 922017
= 31342.4 . 33 + 574.504 + 924.504.92
= (34)1342.(..7) + (574)504 + (924)504.(...2)
= (...1)1342.(...7) + (...1)504 + (...6)504.(...2)
= (...1).(...7) + (...1) + (...6).(...2)
= (...7) + (...1) + (...2)
= (...0) \(⋮\)10
Vậy \(A⋮\)10 (đpcm)
A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)
A=1.21+4^3(1+4+4^2)+...+4^57(1+4+4^2)
A=1.21+4^3.21+...+4^57.21
A=(1+4^3+...+4^57).21
Vậy A chia hết cho 21
+Nếu 2a + 3b chia hết cho 17 => 4 .(2a+3b) chia hết cho 17
<=> 8a+12b chia hết cho 17
Xét 8a+12b+(9a+5b) = 17a+17b chia hết cho 17
Mà 8a+12b chia hết cho 17 => 9a+ 5b chia hết cho 17
+Nếu 9a+5b chia hết cho 17 => 4.(9a+5b) chia hết cho 17
<=> 36a+20b chia hết cho 17
<=> 36a+20b-(34a+17b) chia hết cho 17 ( vì 34a+17b chia hết cho 17)
<=> 2a+3b chia hết cho 17
=> ĐPCM
Ta có 10^6 ‐ 5^7 = 2^6. 5^6 ‐ 5^7
= 5^6 . ﴾2^6 ‐ 5﴿
= 5^6 . ﴾64 ‐ 5﴿
= 5^6 . 59 chia hết cho 59
Vậy 10^6 ‐ 5^7 chia hết cho 59
CMR : 106 - 57\(⋮\)59
Ta có :
106 - 57 = 26 . 56 - 57
= 56 . ( 26 - 5 )
= 56 . ( 64 - 5 )
= 56 . 59
Vì 56 . 59 có số cuối là 59
Nên 106 - 57 \(⋮\)59