K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2017

Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)

- Vì : 

 \(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

...................

\(\frac{1}{n^2}< \frac{1}{n\left(n-1\right)}\)

Cộng vế với vế , ta suy ra 

A < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.....+\frac{1}{n-1}-\frac{1}{n}\)

\(1-\frac{1}{n}< 1\)

=> A<1 ( đpcm )

13 tháng 5 2017

Ta có:\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)>\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)=\(\frac{1}{1}-\frac{1}{n}\)<1 => \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1\)

22 tháng 11 2019

+ Nếu n chia hết cho 3 thì tích chia hết cho 3

+ Nếu n chia 3 dư 1 thì 2n chia 3 dư 2 => 2n+1 chia hết cho 3 => tích chia hết cho 3

+ nếu n chia 3 dư 2 => n+1 chia hết cho 3 => tích chia hết cho 3

=> tích chia hết cho 3 với mọi n

12 tháng 12 2022

11n + 2 + 122n + 1 = 121 . 11n + 12 . 144n

=(133 – 12) . 11n + 12 . 144n = 133 . 11n + (144n – 11n) . 12

Ta có: 133 . 11n chia hết 133;  144n – 11n chia hết (144 – 11)

\Rightarrow 144n – 11n chia hết 133 \Rightarrow 11n + 2 + 122n + 1 chia hết cho 133

chúc bạn học tốt !!!

23 tháng 7 2018

\(VT:\frac{1}{n}.\frac{1}{n+4}\)

\(=\frac{1}{n\left(n+4\right)}\)

\(VP:\frac{1}{4}\left(\frac{1}{n}-\frac{1}{n+4}\right)=\frac{1}{4}\left(\frac{4}{n\left(n+4\right)}\right)=\frac{1}{n\left(n+4\right)}\)

Ta thấy \(VT=VP\left(ĐPCM\right)\)

20 tháng 7 2020

5A=\(\frac{1}{5}+\frac{2}{5^2}...+\frac{n}{5^n}...+\frac{11}{5^{11}}\)

=>4A=5A-A=\(\frac{1}{5}+\frac{1}{5^2}...+\frac{1}{5^{11}}-\frac{11}{5^{12}}\)

=>20A=\(1+\frac{1}{5}+...+\frac{1}{5^{10}}-\frac{11}{5^{11}}\)

=>16A=20A-4A=\(1-\frac{1}{5^{11}}+\frac{11}{5^{12}}-\frac{11}{5^{11}}\)

Mà \(1-\frac{1}{5^{11}}< 1\),\(\frac{11}{5^{12}}-\frac{11}{5^{11}}< 0\)

=>16A<1

Do đó: A<1/16(đpcm)

22 tháng 2 2023

cho địt t trả lời

 

15 tháng 11 2021

1: \(A=6^{2020}\left(1+6\right)+6^{2022}\left(1+6\right)\)

\(=7\left(6^{2020}+6^{2022}\right)⋮7\)

AH
Akai Haruma
Giáo viên
16 tháng 11 2021

Bài 1:

$A=6^{2020}(1+6+6^2+6^3)=6^{2020}.259=6^{2020}.7.37\vdots 7$

Ta có đpcm.