K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2019

\(\Delta'=\left[-\left(m+1\right)\right]^2-\left(2m^2+m+3\right)\)

\(\Delta'=-m^2+m-2\left(1\right)\)

\(\Delta< 0\forall m\) bởi vì:

\(\left\{{}\begin{matrix}a_{\left(1\right)}< 0\\\Delta_{\left(1\right)}< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1< 0\left(đúng\right)\\1^2-4\left(-1\right)\left(-2\right)< 0\left(đúng\right)\end{matrix}\right.\)

2 tháng 2 2021

a) x4 + (1 - 2m)x2 + m2 - 1 = 0 (1)

Đặt t=x2 ta dc PT: t2+(1-2m)t+m2-1=0(2)

Để PT (1) thì PT(2) vô nghiệm:

Để PT(2) vô nghiệm thì: Δ=(1−2m)2−4.(m2−1)<0⇔1−4m+4m2−4m2+4<0

<=>5-4m<0

<=>m>5/4

3 tháng 2 2021

mình cảm ơn ạ,nhưng sai đề rồi bạn ơi

21 tháng 2 2022

\(\Delta'=\left(m-1\right)^2-\left(m^2-2m\right)=m^2-2m+1-m^2+2m=1>0\)

vậy pt có 2 nghiệm pb 

hay ko có gtri m để pt vô nghiệm 

21 tháng 2 2022

\(\Delta'=\left(m-1\right)^2-\left(m^2-2m\right)=m^2-2m+1-m^2+2m=1>0.\)

\(\Rightarrow\) Phương trình luôn có nghiệm với mọi x thuộc R.

\(\Rightarrow\) \(m\in\phi.\)

Bài 2:

a: TH1: m=0

=>-x+1=0

=>x=-1(nhận)

TH2: m<>0

\(\text{Δ}=\left(m-1\right)^2-4m\left(1-m\right)\)

=m^2-2m+1-4m+4m^2

=5m^2-6m+1

=(2m-1)(3m-1)

Để phương trình có nghiệm thì (2m-1)(3m-1)>=0

=>m>=1/2 hoặc m<=1/3

b: Để phương trình có hai nghiệm phân biệt thì (2m-1)(3m-1)>0

=>m>1/2 hoặc m<1/3

c: Để phương trình có hai nghiệmtrái dấu thì (1-m)*m<0

=>m(m-1)>0

=>m>1 hoặc m<0

d: Để phương trình có hai nghiệm dương phân biệt thì

\(\left\{{}\begin{matrix}m\in\left(-\infty;\dfrac{1}{3}\right)\cup\left(\dfrac{1}{2};+\infty\right)\\\dfrac{-m+1}{m}>0\\\dfrac{1-m}{m}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left(-\infty;\dfrac{1}{3}\right)\cup\left(\dfrac{1}{2};+\infty\right)\\0< m< 1\end{matrix}\right.\)

=>1/2<m<1

5 tháng 1 2021

1.

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta=25-12m>0\\x_1^2+x_2^2< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(x_1+x_2\right)^2-2x_1x_2< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(2m-3\right)^2-2\left(m^2-4\right)< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\2m^2-12m< 0\end{matrix}\right.\)

\(\Leftrightarrow0< m< \dfrac{25}{12}\)

5 tháng 1 2021

3.

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta'=11-m>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 11\\6>0\\m-2>0\end{matrix}\right.\)

\(\Leftrightarrow2< m< 11\)

13 tháng 12 2020

Theo Vi-ét ta có:

△' = (m+1)2 -m(m-2)

△' = 1 >0

Vậy pt luôn có nghiệm ∀m

a: Ta có: \(\left(m-1\right)x^2-2x-m+1=0\)

a=m-1; b=-2; c=-m+1

\(ac=\left(m-1\right)\left(-m+1\right)=-\left(m-1\right)^2< 0\forall m\)

Do đó: Phương trình luôn có hai nghiệm trái dấu

b: \(x_1^2+x_2^2=6\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\)

\(\Leftrightarrow\left(\dfrac{2}{m-1}\right)^2-2\cdot\dfrac{-m+1}{m-1}=6\)

\(\Leftrightarrow\dfrac{4}{\left(m-1\right)^2}=4\)

\(\Leftrightarrow\left(m-1\right)^2=1\)

=>m-1=1 hoặc m-1=-1

=>m=2 hoặc m=0