Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(a^6-1=\left(a^3-1\right)\left(a^3+1\right)\)
Đặt \(a=7k⊥r\)với r=1;2;3. (vì a không là bội của 7)
Ta có \(a^3=\left(7k⊥r\right)^3=343k^3⊥147k^2r+21kr^2⊥r^3\)
Xét r với lần lượt các giá trị 1;2;3.
Từ đó ta suy ra được \(a^3=7l⊥1\)
Xét từng trường hợp trên ta suy ra \(\left(a^3-1\right)\left(a^3+1\right)⋮7\)dẫn đến \(\left(a^6-1\right)⋮7\)
Vậy........
Bg
C1: Ta có: n chia hết cho 11 dư 4 (n \(\inℕ\))
=> n = 11k + 4 (với k \(\inℕ\))
=> n2 = (11k)2 + 88k + 42
=> n2 = (11k)2 + 88k + 16
Vì (11k)2 \(⋮\)11, 88k \(⋮\)11 và 16 chia 11 dư 5
=> n2 chia 11 dư 5
=> ĐPCM
C2: Ta có: n = 13x + 7 (với x \(\inℕ\))
=> n2 - 10 = (13x)2 + 14.13x + 72 - 10
=> n2 - 10 = (13x)2 + 14.13x + 39
Vì (13x)2 \(⋮\)13, 14.13x \(⋮\)13 và 39 chia 13 nên n2 - 10 = (13x)2 + 14.13x + 39 \(⋮\)13
=> n2 - 10 \(⋮\)13
=> ĐPCM
\(a^6-1=\left(a^3-1\right)\left(a^3+1\right)=\left(a-1\right)\left(a+1\right)\left(a^2+a+1\right)\left(a^2-a+1\right)\)
\(a^6-1=\left(a^3-1\right).\left(a^3+1\right)=\left(a-1\right).\left(a^2+a+1\right).\left(a-1\right).\left(a^2-a+1\right)\)
\(=\left(a-1\right).\left(a+1\right).\left(a^4+a^2+1\right)=\left(a-1\right).\left(a+1\right).\left(a^4-13a^2+14a^2+1\right)\)
\(=\left(a-1\right).\left(a+1\right).\left(a^2-4\right).\left(a^2-9\right)+14a^2.\left(a-1\right).\left(a+1\right)\)
đến đây dễ rồi, b tự làm tiếp :))
a) Ta có: ( 3 n - 1 ) 2 - 4 = (3n - 1 - 2)(3n - 1 + 2) = 3(n - l)(3n + 1).
Do 3(n - 1)(3n + l) chia hết cho 3 với mọi số tự nhiên n, nên ( 3 n - 1 ) 2 - 4 chia hết cho 3 với mọi số tự nhiên n;
b) Ta có: 100 - ( 7 n + 3 ) 2 =(7 - 7n)(13 – 7n) = 7(1 - n)(13 -7n) chia hết cho 7 với n là số tự nhiên.
Nếu n chia hết cho 13 thì dư 7 có dạng \(13k+7\left(k\inℕ\right)\)
Khi đó :
\(n^2-10=\left(13k+7\right)^2-10=13^2k^2+2.13k.7+7^2-10\)
\(=13^2k^2+13k.14+39=13.\left(13k^2.14k+3\right)⋮13\)
Vậy \(n^2-10⋮13\left(đpcm\right)\)
Chúc bạn học tốt !!!
1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1
Thay vào ab=cd được ka1b=bc1d nên
a1b=c1d (1)
Ta có: a1b \(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m = c1d nên a1m=d
Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)
\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)
Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)
2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.
Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.
Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)
b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)
Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......