K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2020

Giả sử tồn tại số tự nhiên $n$ thỏa mãn $(n^2+3n+5) \vdots 121$

\( \Rightarrow 4\left( {{n^2} + 3n + 5} \right) \vdots 121\\ \Leftrightarrow \left( {4{n^2} + 12n + 9 + 11} \right) \vdots 121\\ \Leftrightarrow \left[ {{{\left( {2n + 3} \right)}^2} + 11} \right] \vdots 121\left( 1 \right) \)

Ta có: \(121=11.11\)

Mà $(n^2+3n+5) \vdots 11$ (vì chia hết cho $121$) \(\Rightarrow {\left( {2n + 3} \right)^2} \vdots 11\)

Mà $11$ là số nguyên tố \( \Rightarrow {\left( {2n + 3} \right)^2} \vdots 121\left( 2 \right)\)

Từ $(1)$ và $(2)$ suy ra \(11 \vdots121\) (vô lí)

Vậy điều giả sử là sai $\Rightarrow n^2+3n+5$ không chia hết cho $121 \Rightarrow$ đpcm

1 tháng 4 2020

11 là số nguyên tố => \(\left(2n+3\right)^2⋮121\)

Em chưa hiểu chỗ này ạ anh có thể giảng giúp ko ?

P/s: E cũng đang cần bài này!

29 tháng 3 2020

Gỉa sử tồn tại số tự nhiên n thỏa n2+3n+5121.

=>4(n2+3n+5)⋮121<=>[(2n+3)2+11]⋮121

Mặt khác, n2+3n+5 11 (vì chia hết cho 121) => (2n+3)^2 11.

mà 11 là số tự nhiên nguyên tố nên (2n+3)^2 121

=> (2n+3)^2+11 ko chia hết cho 121

=>dpcm.

29 tháng 3 2020

v:Đặng Quốc Huy

7 tháng 7 2020

khó thế ai làm đc

7 tháng 7 2020

Bg

Ta có n không chia hết cho 2 và 3 (n \(\inℤ\))

=> n không chia hết cho 6

Vì n không chia hết cho 6 và 2 và 3 nên n chia 6 dư 1 và chia 6 dư 5.

=> n có dạng 6x + 1 hoặc 6x + 5 (với x \(\inℤ\))

Xét n = 6x + 1:

=> 4.(n2) + 3n + 5 = 4.(n2) + 3(6x + 1) + 5

Vì n chia 6 dư 1 nên n2 chia 6 dư 1 => n2 có dạng 6x + 1 luôn

= 4(6x + 1) + 3(6x + 1) + 5

= 24x + 4 + 18x + 3 + 5

= 24x + 18x + (4 + 3 + 5)

= 24x + 18x + 12

Vì 24x \(⋮\)6; 18x \(⋮\)6 và 12 \(⋮\)6

Nên 24x + 18x + 12\(⋮\)6

=> 4.(n2) + 3n + 5 \(⋮\)6

=> ĐPCM

1 tháng 4 2020

Đề sai thì phải bạn ơi,mình thay đổi đề thành chứng minh \(5^{n+3}-2^{n+3}+5^{n+2}-3^{n+1}⋮60\) nhưng mình thử lại không đúng bạn ạ,bạn thử sửa lại xem sao nhé !