Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gỉa sử tồn tại số tự nhiên n thỏa n2+3n+5⋮121.
=>4(n2+3n+5)⋮121<=>[(2n+3)2+11]⋮121
Mặt khác, n2+3n+5 ⋮ 11 (vì chia hết cho 121) => (2n+3)^2⋮ 11.
mà 11 là số tự nhiên nguyên tố nên (2n+3)^2 ⋮121
=> (2n+3)^2+11 ko chia hết cho 121
=>dpcm.
Bg
Ta có n không chia hết cho 2 và 3 (n \(\inℤ\))
=> n không chia hết cho 6
Vì n không chia hết cho 6 và 2 và 3 nên n chia 6 dư 1 và chia 6 dư 5.
=> n có dạng 6x + 1 hoặc 6x + 5 (với x \(\inℤ\))
Xét n = 6x + 1:
=> 4.(n2) + 3n + 5 = 4.(n2) + 3(6x + 1) + 5
Vì n chia 6 dư 1 nên n2 chia 6 dư 1 => n2 có dạng 6x + 1 luôn
= 4(6x + 1) + 3(6x + 1) + 5
= 24x + 4 + 18x + 3 + 5
= 24x + 18x + (4 + 3 + 5)
= 24x + 18x + 12
Vì 24x \(⋮\)6; 18x \(⋮\)6 và 12 \(⋮\)6
Nên 24x + 18x + 12\(⋮\)6
=> 4.(n2) + 3n + 5 \(⋮\)6
=> ĐPCM
Đề sai thì phải bạn ơi,mình thay đổi đề thành chứng minh \(5^{n+3}-2^{n+3}+5^{n+2}-3^{n+1}⋮60\) nhưng mình thử lại không đúng bạn ạ,bạn thử sửa lại xem sao nhé !
Giả sử tồn tại số tự nhiên $n$ thỏa mãn $(n^2+3n+5) \vdots 121$
\( \Rightarrow 4\left( {{n^2} + 3n + 5} \right) \vdots 121\\ \Leftrightarrow \left( {4{n^2} + 12n + 9 + 11} \right) \vdots 121\\ \Leftrightarrow \left[ {{{\left( {2n + 3} \right)}^2} + 11} \right] \vdots 121\left( 1 \right) \)
Ta có: \(121=11.11\)
Mà $(n^2+3n+5) \vdots 11$ (vì chia hết cho $121$) \(\Rightarrow {\left( {2n + 3} \right)^2} \vdots 11\)
Mà $11$ là số nguyên tố \( \Rightarrow {\left( {2n + 3} \right)^2} \vdots 121\left( 2 \right)\)
Từ $(1)$ và $(2)$ suy ra \(11 \vdots121\) (vô lí)
Vậy điều giả sử là sai $\Rightarrow n^2+3n+5$ không chia hết cho $121 \Rightarrow$ đpcm
11 là số nguyên tố => \(\left(2n+3\right)^2⋮121\)
Em chưa hiểu chỗ này ạ anh có thể giảng giúp ko ?
P/s: E cũng đang cần bài này!