K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2021

help meeeeeeeeeeeee

4 tháng 9 2021

Hướng dẫn:

undefined

Xét hai tam giác vuông EBC và FCB có:

BC (cạnh huyền chung)

BE = CF (giả thiết)

Vậy ∆EBC = ∆FCB (cạnh huyền cạnh góc vuông)

=> ˆFBC=ˆECBFBC^=ECB^

hay ∆ABC cân tại A

+ Nếu tam giác có ba đường cao bằng nhau, tương tự như chứng minh trên, ta chứng minh được ba góc của chúng bằng nhau, suy ra

đó là tam giác đều.

#Học tốt

15 tháng 9 2019

A B C E D

Xét hai tam giác vuông BDC và CEB, ta có : 

\(\widehat{BDC}=\widehat{CEB}=90^o\)

\(BD=CE\left(gt\right)\)

BC cạnh huyền chung

\(\Rightarrow\Delta BDC=\Delta CEB\) (cạnh huyền, cạnh góc vuông)

\(\Rightarrow\widehat{DCB}=\widehat{EBC}\)(hai góc tương ứng bằng nhau)

Hay \(\widehat{ACB}=\widehat{ABC}\)

\(\Rightarrow\Delta ABC\) cân tại A 

Vậy \(\Delta ABC\) cân tại A

Chúc bạn học tốt !!!

11 tháng 7 2015

đề bạn ghi sai rồi, phải là BD và CE chứ

a)Tam giác BEC và CDB có:

        Góc E=D=90 độ

        BC cạnh chung

       Góc B=C(tam giác ABC đều)

vậy tam giác BEC=CDB(Cạnh huyền-góc nhọn)

b) Vì tam giác BEC=CDB => BE=CD(cạnh tương ứng)

mà                               BE+AE=CD+AD

Từ hai điều này suy ra AE=AD. nên tam giác AED cân tại A, lại có góc A bằng 60 độ, nên tam giác AED là tam giác đều

=> Góc AED=60 độ.

c) ta có Góc AED=ABC=60 độ

mà chúng ở vị trí đồng vị nên ED//BC.

Tứ giác BEDC có ED//BC vậy BEDC là hình thang.

Hình thang BEDC có 2 góc kề đáy góc B=C=60 độ

Vậy BEDC là hình thang cân.

d) Xét tam giác ABI và ACI có:

     B=C=90 độ

   AI cạnh chung

   AB=AC

Vậy Tam giác ABI=ACI(Cạnh huyền-cạnh góc vuông) 

=>IB=IC hay I thuộc đường trung trực của BC (1)

Tam giác ABC đều, có AH là đường cao nên đồng thời cũng là trung trực của BC (2)

từ (1) và (2) suy ra A, H, I thuộc đường trung trực của BC hay A, H, I thẳng hàng.

  

a: Xét ΔBFC vuông tại F và ΔBKA vuông tại K có

góc B chung

=>ΔBFC đồng dạng vơi ΔBKA

=>BF/BK=BC/BA

=>BF/BC=BK/BA; BF*BA=BK*BC

b; Xét ΔBFK và ΔBCA có

BF/BC=BK/BA

góc B chung

=>ΔBFK đồng dạng với ΔBCA

 

5 tháng 4 2017

A B C H

\(\text{Xét tam giác ABC và tam giác HBA,có:}\)

\(\widehat{A}=\widehat{H}=90^0\)

\(\widehat{B}\)\(\text{chung}\)

\(\text{Vậy tam giác ABC~tam giác HBA(g.g) }\)

\(\Rightarrow\frac{AB}{HB}=\frac{BC}{AB}\Rightarrow AB^2=HB.BC\)

B.cHỨNG MINH TƯƠNG TỰ

5 tháng 4 2017

b) xét tam giác HAB và tam giác HCA ,có:

góc BHA = góc CHA (=90)

góc BAH = góc HCA (cùng phụ B)

nên tam giác HAB ~ tam giác HCA

=> HA/HB = HC/HA 

=> HA= HC.HB

Vào TK mk nhá ! Nguồn h o c 2 4 270264

Ôn tập chương II - Đa giác. Diện tích đa giác

Ôn tập chương II - Đa giác. Diện tích đa giác

Ôn tập chương II - Đa giác. Diện tích đa giác

9 tháng 6 2021

bạn ơi góc HEC có vuông đâu

 

a: Xét ΔAEB vuông ạti E và ΔAFC vuôg tại F có

góc BAE chung

=>ΔAEB đồng dạg vơi ΔAFC

=>AE/AF=AB/AC
=>AE*AC=AB*AF
b: Xét ΔAEF và ΔABC có

AE/AB=AF/AC
góc A chung

=>ΔAEF đồng dạng vơi ΔABC

a: Xét ΔBKA vuông tại K và ΔBFC vuông tại F có 

\(\widehat{FBC}\) chung

Do đó: ΔBKA\(\sim\)ΔBFC

Suy ra: BK/BF=BA/BC

hay \(BK\cdot BC=BF\cdot BA\)

b: Xét ΔBKF và ΔBAC có

BK/BA=BF/BC

\(\widehat{KBF}\) chung

Do đó: ΔBKF\(\sim\)ΔBAC