K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2015

Giả sử A là 1 số nguyên tố , A = 30 k + r với k,rεN và 0≤r<30.

Nếu r chia hết cho 2, 3 hoặc 5 thì A cũng chia hết cho 2, 3 (hoặc 5) nên A = 2, 3 hoặc 5 ( thỏa mãn)

 

Nếu r không chia hết cho 2, 3 và 5 : Giả sử r là hợp số thì r=r1.r2 với r1,r2 > 1.

Vì  r không chia hết cho 2, 3 và 5 nên r1,r2 cũng không chia hết cho 2, 3 và 5 ⇒r1,r2 ≥ 7

⇒r=r1.r2≥7.7=49 ( vô lý ).

 

Vậy r không phải là hợp số nên r = 1 hoặc r là số nguyên tố.

19 tháng 11 2015

Giả sử A là 1 số nguyên tố ,A=30.k+r   (k,r \(\in\) N,0 >=r<30)

nếu r chia hết cho 2,3 và 5 thì A cũng chia hết cho 2,3 và 5 nên A=2,3 và 5(thoả mãn)

nếu r ko chia hết cho 2,3 và 5 :giả sử r là hợp số thì r=r1.r2       (r1,r2>1)

vì r ko chia hết cho 2,3 và 5 nên r1 và r2 cũng ko chia hết cho 2,3 và 5=>r1,r2>=7

=>r=r1.r2>=7.7=49(vô lý)

vậy r ko phải là hợp số nên r=1 hoặc r là số nguyên tố

bạn lưu ý là >= là lớn hơn hoặc bằng nhá

(tick nha)

 

23 tháng 10 2015

Khi A=2,3,5 thỏa mãn
khi A>5 ( A là số nguyên tố)
Ta có:
A=2.5.3.k+r
nên A−r⋮2,3,5
Xét A−r⋮2 Ta có A lẻ nên r lẻ và r<30
Xét A−r⋮5 Do A không chia hết 5 nên r không chia hết 5 và r
Xét A−r⋮3 Do A không chia hết 3 nên r không chia hết 3
Nếu A chia 3 dư 1 thì r chia 3 dư 1. Ta có các số chia 3 dư 1; <30; không chia hết 5 ; lẻ; không chia hết 3 là:
" 1,7,13,19"
Nếu A chia 3 dư 1 thì r chia 3 dư 2 Ta có các số chia 3 dư 2; <30; không chia hết 5 ; lẻ ; không chia hết 3 là:
" 11, 17,29"

=>đpcm

23 tháng 10 2016

Giả sử A là 1 số nguyên tố , A = 30 k + r với k,rεN và 0≤r<30.

Nếu r chia hết cho 2, 3 hoặc 5 thì A cũng chia hết cho 2, 3 (hoặc 5) nên A = 2, 3 hoặc 5 ( thỏa mãn)

Nếu r không chia hết cho 2, 3 và 5 :

Giả sử r là hợp số thì r=r1.r2 với r1,r2 > 1.

Vì r không chia hết cho 2, 3 và 5 nên r1,r2 cũng không chia hết cho 2, 3 và 5

=> r1,r2 ≥ 7 => r = r1.r2 ≥ 7.7 = 49 ( vô lý ).

Vậy r không phải là hợp số nên r = 1 hoặc r là số nguyên tố. 

22 tháng 7 2015

Bài 1 :

Gọi p là số nguyên tố phải tìm.

Ta có: p chia cho 60 thì số dư là hợp số $⇒$⇒ p = 60k + r = 22.3.5k + r  với k,r $∈$∈ N ; 0 < r < 60 và r là hợp số.

Do p là số nguyên tố nên r không chia hết các thừa số nguyên tố của p là 2 ; 3 và 5.

Chọn các hợp số nhỏ hơn 60, loại đi các số chia hết cho 2 ta có tập hợp A =  {9 ; 15 ; 21 ; 25 ; 27 ; 33 ; 35 ; 39 ; 45 ; 49 ; 21 ; 55 ; 57}

Loại ở tập hợp A các số chia hết cho 3 ta có tập hợp B = {25 ; 35 ; 49 ; 55}

Loại ở tập hợp B các số chia hết cho 5 ta có tập hợp C = {49}

Do đó r = 49. Suy ra p = 60k + 49. Vì p < 200 nên k = 1, khi đó p = 60.1 + 49 = 109 hoặc k = 2, khi đó p = 60.2 + 49 = 169.

Loại p = 169 = 132 là hợp số  chỉ có p = 109.

Số cần tìm là 109.

22 tháng 7 2015

2)Gọi số nguyên tố đó là n, ta có n=30k+r (r<30, r nguyên tố) 
Vì n là số nguyên tố nên r không thể chia hết cho 2,3,5 
Nếu r là hợp số không chia hết cho 2,3,5 thì r nhỏ nhất là 7*7 = 49 không thỏa mãn 
Vậy r cũng không thể là hợp số 
Kết luận: r=1 

Đáp án :

Dư 2 nha

Học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

23 tháng 5 2021
Đáp án : Dư 2