K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2021

\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)

\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)

\(x=0;y=0\Leftrightarrow B=0\)

Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)

Vậy \(A\ne B\)

19 tháng 11 2021

Câu a bạn sửa lại đề 11→1

\(a,VT=\dfrac{a^2-2a+1}{\left(a-1\right)\left(a^2+1\right)}\cdot\dfrac{a^2+1}{a^2+a+1}\\ =\dfrac{\left(a-1\right)^2}{\left(a-1\right)\left(a^2+a+1\right)}=\dfrac{a-1}{a^2+a+1}=VP\)

\(b,=\left[\dfrac{\left(1-x\right)\left(x^2+x+1\right)}{1-x}-x\right]\cdot\dfrac{\left(1+x\right)\left(1-x^2\right)}{1+x}\\ =\dfrac{\left(x^2+1\right)\left(1+x\right)\left(1-x^2\right)}{1+x}=\left(x^2+1\right)\left(1-x^2\right)=VP\)

NV
18 tháng 9 2021

\(\dfrac{a^3}{\left(b+1\right)\left(c+2\right)}+\dfrac{b+1}{12}+\dfrac{c+2}{18}\ge3\sqrt[3]{\dfrac{a^3\left(b+1\right)\left(c+2\right)}{216\left(b+1\right)\left(c+2\right)}}=\dfrac{a}{2}\)

Tương tự: \(\dfrac{b^3}{\left(c+1\right)\left(a+2\right)}+\dfrac{c+1}{12}+\dfrac{a+2}{18}\ge\dfrac{b}{2}\)

\(\dfrac{c^3}{\left(a+1\right)\left(b+2\right)}+\dfrac{a+1}{12}+\dfrac{b+2}{18}\ge\dfrac{c}{2}\)

Cộng vế:

\(VT+\dfrac{5}{36}\left(a+b+c\right)+\dfrac{7}{12}\ge\dfrac{1}{2}\left(a+b+c\right)\)

\(\Rightarrow VT\ge\dfrac{13}{36}\left(a+b+c\right)-\dfrac{7}{12}\ge\dfrac{13}{36}.3\sqrt[3]{abc}-\dfrac{7}{12}=\dfrac{1}{2}\) (đpcm)

26 tháng 11 2021

\(B=\left(\dfrac{a-b}{a^2+ab}-\dfrac{a}{b^2+ab}\right):\left(\dfrac{b^3}{a^3-ab^2}+\dfrac{1}{a+b}\right)\)

    \(=\left(\dfrac{a-b}{a\left(a+b\right)}-\dfrac{a}{b\left(a+b\right)}\right):\left(\dfrac{b^3}{a\left(a-b\right)\left(a+b\right)}+\dfrac{1}{a+b}\right)\)

    \(=\dfrac{b\left(a-b\right)-a^2}{ab\left(a+b\right)}:\dfrac{b^3+a\left(a-b\right)}{a\left(a-b\right)\left(a+b\right)}\)

    \(=\dfrac{ab-b^2-a^2}{ab\left(a+b\right)}\cdot\dfrac{a\left(a-b\right)\left(a+b\right)}{a^2-ab+b^3}\)

    \(=\dfrac{\left(a-b\right)\left(ab-b^2-a^2\right)}{b\left(a^2-ab+b^3\right)}\)

    \(=\dfrac{-\left(a-b\right)\left(a^2-ab+b^2\right)}{b\left(a^2-ab+b^3\right)}\)

Đề lỗi rồi chứ mình ko rút gọn đc nữa

NV
15 tháng 3 2022

\(\dfrac{a^3}{\left(b+2\right)\left(c+3\right)}+\dfrac{b+2}{36}+\dfrac{c+3}{48}\ge3\sqrt[3]{\dfrac{a^3\left(b+2\right)\left(c+3\right)}{1728\left(b+2\right)\left(c+3\right)}}=\dfrac{a}{4}\)

Tương tự: \(\dfrac{b^3}{\left(c+2\right)\left(a+3\right)}+\dfrac{c+2}{36}+\dfrac{a+3}{48}\ge\dfrac{b}{4}\)

\(\dfrac{c^3}{\left(a+2\right)\left(b+3\right)}+\dfrac{a+2}{36}+\dfrac{b+3}{48}\ge\dfrac{c}{4}\)

Cộng vế:

\(P+\dfrac{7\left(a+b+c\right)}{144}+\dfrac{17}{48}\ge\dfrac{a+b+c}{4}\)

\(\Rightarrow P\ge\dfrac{29}{144}\left(a+b+c\right)-\dfrac{17}{48}\ge\dfrac{29}{144}.3\sqrt[3]{abc}-\dfrac{17}{48}=\dfrac{1}{4}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

19 tháng 11 2021

\(a,VT=\left[\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{x+1-3x^2-3x}{3x}\right]\cdot\dfrac{x}{x-1}\\ =\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{\left(x+1\right)\left(1-3x\right)}{3x}\right)\cdot\dfrac{x}{x-1}\\ =\left(\dfrac{2}{3x}-\dfrac{2-6x}{3x}\right)\cdot\dfrac{x}{x-1}=\dfrac{6x}{3x}\cdot\dfrac{x}{x-1}=\dfrac{2}{x-1}=VP\left(x\ne0;x\ne1\right)\)

\(b,VT=\dfrac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}=VP\left(a\ge0;a\ne1\right)\)

19 tháng 11 2021

anh Minh đâu r hả cj?