K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2021

Giả sử x=a là nghiệm nguyên f(a)

\(\Leftrightarrow-4a^4+3a^3-2a^2+a-1=0\\ \Leftrightarrow-4a^4-2a^2+4a^3-a\left(a^2-1\right)=1\\ \Leftrightarrow1=-4a^4+4a^3-2a^2-\left(a+1\right)a\left(a-1\right)\left(1\right)\)

Vì a nguyên nên \(\left(a+1\right)a⋮2\Rightarrow\left(a+1\right)a\left(a-1\right)⋮2\)

Mà \(-4a^4+4a^3-2a^2⋮2\)

\(\Rightarrow-4a^4+4a^3-2a^2-\left(a-1\right)a\left(a+1\right)⋮2\) kết hợp (1)

\(\Rightarrow1⋮2\left(VL\right)\)

Vậy không tồn tại nghiệm nguyên của f(x)

12 tháng 4 2016

bài 1:

a) C= 0

hay 3x+5+(7-x)=0

3x+(7-x)=-5

với 3x=-5

x= -5:3= \(x = { {-5} \over 3}\)

với 7-x=-5

x= 7+5= 12

=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12

mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha

12 tháng 4 2016

EM CHỊU RỒI ANH ƠI!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Giả sử đa thức P(x) có nghiệm nguyên 

=>P(x) có nghiệm chia hết cho 1 hoặc -1

=>1 và -1 là nghiệm

+) Nếu x=1

⇒P(1)=1^4−3.1^3−4.1^2−2.1−1⇒P(1)=1^4-3.1^3-4.1^2-2.1-1

⇒P(1)=1−3.1−4.1−2.1−1⇒P(1)=1-3.1-4.1-2.1-1

⇒P(1)=1−3−4−2−1⇒P(1)=1-3-4-2-1

⇒P(1)=−9≠0⇒P(1)=-9≠0

⇒x=1 không phải là nghiệm của P(x)P(x)

+) Nếu x=−1

⇒P(−1)=(−1)^4−3.(−1)^3−4.(−1)^2−2.(−1)−1⇒P(-1)=(-1)^4-3.(-1)^3-4.(-1)^2-2.(-1)-1

⇒P(−1)=1−3.(−1)−4.1−(−2)−1⇒P(-1)=1-3.(-1)-4.1-(-2)-1

⇒P(−1)=1+3−4+2−1⇒P(-1)=1+3-4+2-1

⇒P(−1)=1≠0⇒P(-1)=1≠0

⇒x=−1 không phải là nghiệm của P(x)P(x)

Vậy P(x) không có nghiệm là số nguyên

 

27 tháng 5 2022

( x2+1/2)2 +3/4 > 0

vậy làm gì có x cho đa thức = 0

VÔ NGHIỆM

29 tháng 5 2022

x≥0 với mọi x 

x≥0 với mọi x 

⇒ x4+ x2 ≥ 0 

 x4 +x2 +1>1

⇒Đa thức trên vô nghiệm

 

 

 

 

 

 

 

 

 

 

.

4 tháng 5 2016

cái này có nghiệm

13 tháng 6 2019

Ta có:

\(x^4+2x^2+1=\left(x^2+1\right)^2\)

Vì \(x^2\ge0\)

\(\Rightarrow x^2+1\ge1>0\)

\(\Rightarrow\left(x^2+1\right)^2>0\)

Vậy đa thức \(x^4+2x^2+1\)không có nghiệm

28 tháng 3 2018

a) Sắp xếp các hạng tử của đa thức M(x) theo lũy thừa giảm của biến

M(x)=2x4−x4+5x3−x3−4x3+3x2−x2+1

=x4+2x2+1

b) M(1)=14+2.12+1=4

M(−1)=(−1)4+2.(−1)2+1=4

c) Ta có: M(x)=x4+2x2+1

Vì giá trị của x4 và 2x2 luôn lớn hơn hay bằng 0 với mọi x nên x4 +2x2 +1 > 0  với mọi x tức là M(x) ≠ 0 với mọi x. Vậy M(x) không có nghiệm.