Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Sửa đề: \(x^2+2x+3\)
Đặt \(x^2+2x+3=0\)
\(\Delta=2^2-4\cdot1\cdot3=4-12=-8< 0\)
Do đó: Phương trình vô nghiệm
b: Đặt \(x^2+4x+6=0\)
\(\Leftrightarrow x^2+4x+4+2=0\)
\(\Leftrightarrow\left(x+2\right)^2+2=0\)(vô lý)
Ta có : x2 - 4x + 16
= x2 - 4x + 4 + 12
= (x - 2)2 + 12
Vì \(\left(x-2\right)^2\ge0\forall x\)
Nên : (x - 2)2 + 12 \(>0\forall x\)
Hay x2 - 4x + 16 \(>0\forall x\)
Vậy đa thức trên vô nghiệm
f(x)=x2+x+1=x2+\(\dfrac{1}{2}x+\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)
=\(x\left(x+\dfrac{1}{2}\right)+\dfrac{1}{2}\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)
=\(\left(x+\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^{^2}+\dfrac{3}{4}\)
=>f(x)≥\(\dfrac{3}{4}\)
=>đa thức trên vô nghiệm
Bài này có nhiều cách, vừa rồi là cách cơ bản, còn nếu bạn muốn nâng cao chút thì có thể dùng cách này nha:
Xét x≥0 thì x+1>0
x(x+1)≥0=>x(x+1)+1>0 =>x2+x+1>0 (1)
Xét -1<x<0 thì x+1≤0. Ta lại có x2≥0 nên x2+x+1 >0 (2)
Xét x≤-1 thì x<0 và x+1≤0. Do đó
x(x+1) ≥0=>x(x+1) +1>0=>x2+x+1>0 (3)
Từ (1), (2), (3)=> đa thức f(x) vô nghiệm
x2+5x+4=(x2+x)+(4x+4)=(x+4)(x+1)=0
Đa thức đó luôn có 2 nghiệm phân biệt -4 và -1
mk có cách khác:
vì x2 lớn hơn hoặc bằng 0
5x lớn hơn hoặc bằng 0
=> x2 + 4 + 5x lớn hơn hoặc bằng 4 > 0
=> đa thức trên vô nghiệm
theo mk bn nên để số 4 ra ngoài vì nó là số tự do mà!!
cho - x2 - 4x- 20 = 0
=> - [ (x2 + 2x * 2 + 22) + 16] = 0
=> - [ (x + 2 )2 + 16 ] =0
=> - (x + 2 )2 - 16 = 0
mà (x + 2 )2 >= 0
=> - (x + 2 )2 < hoặc = 0
=> - (x + 2 )2 - 16 < 0
Hay - x2 - 4x - 20 < 0
=> Đa thức - x2 - 4x- 20 ko có nghiệm
Vậy .....
Ta có:
\(\left(x-4\right)^2\ge0\)
\(\left(x+5\right)^2\ge0\)
\(\Rightarrow\left(x-4\right)^2+\left(x+5\right)^2=0\) khi
\(\left\{{}\begin{matrix}\left(x-4\right)^2=0\\\left(x+5\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\x+5=0\end{matrix}\right.\) => không có giá trị x nào thỏa mãn
=> đa thức vô nghiệm
\(M=x^2+8x+16+1=\left(x+4\right)^2+1>0\)
Do đó: M vô nghiệm
D(x) = x2- 4x +4 +1 = (x-2)2 +1 >0
vậy D(x) vô nghiệm
Dùng hằng thức (a-b)2=a2-2ab+b2 ta có
D(x)= X2-4x+5=x2-2x2+22+1
=(x-2)2+1
Vì (x-2)2>-1 suy ra (x-2)2+1>0
Vậy đa thức D(x)=x2-4x+5 không có nghiệm