Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(n^6-n^4+2n^3+2n^2\)
\(=\left(n^6+2n^3+1\right)-\left(n^4-2n^2+1\right)\)
\(=\left(n^3+1\right)^2-\left(n^2-1\right)^2\)
\(=\left(n^3+1-n^2+1\right)\left(n^3+1+n^2-1\right)\)
\(=n^2\left(n^3-n^2+2\right)\left(n+1\right)\)
\(=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)
Ta thấy \(n^2\left(n+1\right)^2\) là số chính phương (1) \(n^2-2n+2=\left(n-1\right)^2+1\)ko phải là số chính phương (2)
Từ (1);(2) => \(n^2\left(n+1\right)^2\left(n^2-2n+2\right)\) ko phải là số chính phương (đpcm)
A = [n.(n+3)] . [(n+1).(n+2)]
= (n^2+3n).(n^2+3n+2) > (n^2+3n)^2 (1)
Lại có : A = (n^2+3n).(n^2+3n+2) = (n^2+3n+1)^2-1 < (n^2+3n+1)^2 (2)
Từ (1) và (2) => (n^2+3n)^2 < A < (n^2+3n+1)^2
=> A ko phải là số chính phương
Tk mk nha
n6 - n4 + 2n3 + 2n2
= n2 . (n4 - n2 + 2n +2)
= n2 . [n2(n - 1)(n + 1) + 2(n + 1)]
= n2 . [(n + 1)(n3 - n2 + 2)]
= n2 . (n + 1) . [(n3 + 1) - (n2 - 1)]
= n2. (n + 1)2 . (n2 - 2n + 2)
Với n ∈ N, n > 1 thì n2 - 2n + 2 = (n - 1)2 + 1 > (n - 1)2
Và n2 - 2n + 2 = n2 - 2(n - 1) < n2
Vậy (n - 1)2 < n2 - 2n + 2 < n2
=> n2 - 2n + 2 không phải là một số chính phương.
+) Nếu n chẵn => n = 2k (k \(\in\) N) => 2n = 22k = 4k
=> 2n + 3 = 4k + 3 , chia cho 4 dư 3 => 2n + 3 không là số chính phương (Số chính phương chia cho 4 chỉ dư 0 hoặc 1)
+) Nếu n lẻ => n = 2k + 1 (k \(\in\) N* vì n > 1) => 2n + 3 = 22k+1 + 3 = 2.4k + 3 , chia cho 4 dư 3 => 2n + 3 không là số chính phương
Vậy Với mọi n > 1 thì 2n + 3 không là số chính phương
2^n+3 ko phải là số chính phương vì 1 số chính phương chia 2 ko dư 3
Bạn vào liink này nha:https://olm.vn/hoi-dap/detail/11367472277.html