K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2016

Ta có:

2^100(2^11-2^5)=2^100 x 2^5 x (2^6-1)=2^100 x (2^5 x 63)=2^100 x 2016 suy ra chia hết 2016

*Sửa lại đề*

A = 21+ 22+ 23+ 24 + .. + 2100

A = (21+22) + (23+ 24) +...+ (299+ 2100)

A = 2.(1+2) + 23.(1+2) + .. + 299. (1+2)

A = 2.3 + 23. 3 + .. + 299.3

A = 3 . (21 + 23 + .... + 299)

Mà 3 chia hết cho 3 

=> A chia hết cho 3

19 tháng 12 2016

Ta có: 20162016 + 20162017 = 20162016.(1+2016) = 20162016 . 2017 chia hết chi 2017

19 tháng 12 2016

Giả sử 20162016 + 20162017 không chia hết cho 2017 
Ta có : 20162  = 4064256 = 2015 x 2017 + 1 
=> 2016=  1 ( mod 2017 ) 
=> (20162)^1008 = 11008 ( mod 2017 ) 
=> 20162016 = 1 ( mod 2017 ) 
Ta lại có : 20162016 x 2016 = 1 x 2016  ( mod 2017 )
=> 20162017 = 2016 ( mod 2017 ) 
Nên 20162016 + 20162017 = 0 ( mod 2017 ) 
Vậy điều đã giả sử là sai 
=> 20162016 x 20162017 chia hết cho 2017 . 
mình nha . Yêu , chúc bạn học thật tốt 
 

1 tháng 10 2018

Ta có: \(2^{17}+2^{14}\)

\(=2^{14}\left(2^3+1\right)=2^{14}\times9⋮9\)

\(15^3-25^2\)

\(=3^3.5^3-5^4\)

\(=5^3\left(27-5\right)=5^3.2.11⋮11\)

1 tháng 10 2018

\(2^{17}+2^{14}=2^{14}\left(2^3+1\right)=2^{14}\cdot9\Rightarrow2^{17}+2^{14}⋮9\)

16 tháng 7 2016

Ta có:

\(3^{2016}+3^{2015}-3^{2014}=3^{2014}\left(3^2+3-1\right)=3^{2014}.11\) chia hết cho 11

Vậy 32016+32015-32014 chia hết cho 11 (đpcm)

--------------------------

Ta có:

  • \(36^{36}-9^{10}=4^{36}.9^{36}-9^{10}=9^{10}\left(4^{36}.9^{26}-1\right)=\) chia hết cho 9 (1)
  • \(36^{36}-9^{10}=\left(...6\right)-\left(...1\right)=\left(...5\right)\) chia hết cho 5 (2) 

Vì 3636 có tận cùng là 6, 910 có tận cùng là 1 => 3636-910 có tận cùng là 5 [ phần này mình chỉ nói thêm thôi nhé ]

Từ (1),(2) và (5;9)=1 =>3636-910 chia hết cho 5.9=45 (đpcm)

16 tháng 7 2016

9. \(3^{2016}+3^{2015}-3^{2014}=3^{2014}\left(3^2+3-1\right)\)

                                      \(=3^{2014}.11⋮11\)

Vậy \(3^{2016}+3^{2015}-3^{2014}\) chia hết cho 11

16 tháng 7 2016

Mình chỉ làm được cái thứ 2 thôi..thông cảm nhé:

 36^36 - 9^10 chia hết cho 9 (1) (vì 36^36 và 9^10 đều chia hết cho 9) 
36^36 tận cùng là 6 (số tận cùng bằng 6 nâng lên luỹ thừa n (n nguyên dương) thì kết quả cũng tận cùng là 6) 
9^10 tận cùng là 1 (9 luỹ thừa m với m chẵn luôn tận cùng là 1) 
---> 36^36 - 9^10 tận cùng là 5 và do đó nó chia hết cho 5 (2) 
Vì 5 và 9 là 2 số nguyên tố cùng nhau nên từ (1),(2) ---> 36^36 - 9^10 chia hết cho 45.

16 tháng 7 2016

               9)  Ta có :

                  32016 + 32015 - 32014 = 32014 . (32 + 3 - 1) = 32014 . (9 + 3 - 1) = 32014 . 11 chia hết cho 11 (ĐPCM)

             Tớ chỉ làm đc phần 9 thui ^_^

8 tháng 9 2017

a)

= 2 ( 1 + 2) + 22(1 +2) +.........+ 2201591 +2)

= 3( 2 + 22 +........+ 22015) nên chia hết cho 3

b)

= 2( 1 + 2 + 22) + 23( 1 + 2 +22) +......+ 22014( 1 + 2 +22)

= 7( 2 + 23 + .........+ 22014) nên chia hết cho 7

16 tháng 5 2020

Gọi 2016 số nguyên đấy là: \(a_1;a_2;a_3;...;a_{2016}\)

Ta có: \(a_i^3-a_i=a_i\left(a_i^2-1\right)=a_i\left(a_i-1\right)\left(a_i+1\right)⋮6\)  với i là số bất kì từ 1 đến 2016

( 3 số tự nhiên liên tiếp vừa chia hết cho 2 vừa chia hết cho 3 nên chia hết cho 6 ) 

=> \(\left(a_1^3+a_2^3+a_3^3+...+a_{2016}^3\right)-\left(a_1+a_2+a_3+...+a_{2016}\right)\)

\(\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+\left(a_3^3-a_3\right)+...+\left(a_{2016}^3-a_{2016}\right)⋮6\)

mà \(a_1+a_2+a_3+..+a_{2016}=2016⋮6\)

=> \(a_1^3+a_2^3+a_3^3+..+a_{2016}^3⋮6\)

29 tháng 5 2022

undefined