K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2022

Công bố:

Ta cần chứng minh số có dạng \(224999...91000...09\)(n-2 cs 9 nằm giữa 4 và 1; n chữ số 0) đều là các số chính phương.

Thật vậy, ta có \(224999...91000...09=224999...91000...000+9=224999...90000...000+10^{n+1}+9\)

           n-2 cs 9      n cs 0                      n-2 cs 9         n+1 cs 0                            n-2 cs 9        n+2 cs 0 

\(=224999...9.10^{n+2}+10^{n+1}+9=\left(224000...00+999...9\right).10^{n+2}+10^{n+1}+9\)

                 n-2 cs 9                                                                 n-2 cs 0             n-2 cs 9

\(=\left(224.10^{n-2}+10^{n-2}-1\right).10^{n+2}+10^{n+1}+9=224.10^{2n}+10^{2n}-10^{n+2}+10^{n+1}+9\)\(=225.10^{2n}-100.10^n+10.10^n+9=\left(15.10^n\right)^2-90.10^n+9\)\(=\left(15.10^n\right)^2-2.15.10^n.3+3^2=\left(15.10^n-3\right)^2\)là số chính phương.

Vậy \(224999...91000...09\)(n-2 cs 9 nằm giữa 4 và 1; n chữ số 0) là số chính phương.

\(\Rightarrowđpcm\)

13 tháng 12 2021

Gọi số tự nhiên cần tìm là \(\overline{ab}\)(\(a,b\inℕ\)\(a\ne0\)\(a,b\le9\))

Vì tổng các chữ số của số đó là 9 nên ta có phương trình \(a+b=9\)(1)

Ta có \(\overline{ab}=10a+b\)

Khi viết chữ số 0 vào giữa hai chữ số thì ta được số mới là \(\overline{a0b}=100a+b\)

Vì số mới gấp 9 lần số đã cho nên ta có phương trình \(100a+b=9\left(10a+b\right)\Leftrightarrow100a+b=90a+9b\Leftrightarrow10a=8b\Leftrightarrow b=\frac{5}{4}a\)(2)

Từ (1) và (2) \(\Rightarrow a+\frac{5}{4}a=9\Leftrightarrow\frac{9}{4}a=9\Leftrightarrow a=4\left(nhận\right)\)

\(\Rightarrow b=9-a=9-4=5\)(nhận)

Vậy số tự nhiên ban đầu là 45

24 tháng 6 2015

ta có abc^2 có tận cùng là abc nên c chỉ có thể =1;5;6

nếu c=1thi ab1^2-ab1=1000n (n là 1 số tự nhiên)

suy ra ab1(ab1-1)=1000n suy ra ab1.ab0=1000n suy ra ab1.ab=100n suy ra b=0

tức là a01.a0=100n suy ra a01.a=10n suy ra a=0 dieu vo li

tương tự với a=6 và a=5 thì ta chỉ có 1 kết quả là 625

28 tháng 7 2017

a/ \(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)

\(\Leftrightarrow a+b=a+c+b+c+2\sqrt{ab+ac+bc+c^2}\)

\(\Leftrightarrow-c=\sqrt{ab+ac+bc+c^2}\)

\(\Leftrightarrow c^2=ab+ac+bc+c^2\)

\(\Leftrightarrow ab+ac+bc=0\)

\(\Leftrightarrow ab=-c\left(a+b\right)\)

\(\Leftrightarrow\frac{ab}{a+b}=-c\)

\(\Leftrightarrow\frac{a+b}{ab}=-\frac{1}{c}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)(đúng)