Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
VT = a2(b-c) + b2(c-a) + c2(a-b)
= a2b - a2c + b2c - b2a + c2a - c2b
= ( a2b - b2a ) - ( a2c - b2c ) + ( c2a - c2b )
= ab(a-b) - c(a2-b2) + c2(a-b)
= ab(a-b) - c(a-b)(a+b) + c2(a-b)
=(a-b) [ ab - c(a+b) + c2 ]
= (a-b) [ ab-ca-cb+c2 ]
= (a-b) [ b(a-c) - c(a-c) ]
= (a-b)(a-c)(b-c)
= (a-c)(b-a)(c-b)
Mà VP = (a-c)(b-a)(c-b)
⇒ VT = TP
⇒ a2 (b-c) + b2 ( c-a ) + c2 ( a-b) = (a-c)(b-a)(c-b)
Chép lẹ ii coan , nhanh ko mai m chết vs thầy :))
a, \(\dfrac{a^2+2ab+b^2}{4}\ge ab\)
\(\Leftrightarrow\)a^2+2ab+b^2>=4ab
\(\Leftrightarrow\)a^2-2ab+b^2>=0
\(\Leftrightarrow\)(a-b)^2>=0 (luôn đúng)
b,\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) luôn đúng
Ta có:
+) \(VT=a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+c^2\)
\(=2a^2+2b^2+2c^2+2ab+2ac+2bc\)
+) \(VP=a^2+2ab+b^2+b^2+2bc+c^2+c^2+2ac+a^2\)
\(=2a^2+2b^2+2c^2+2ab+2bc+2ac\)
Suy ra: \(VT=VP\left(đpcm\right)\)
(a^2+b^2)/2>=ab
<=>(a^2+b^2)>=2ab
<=> a^2+2ab+b^2>=2ab
<=>a^2+b^2>=0(luôn đúng)
=> điều phải chứng minh.
Xét hiệu: \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)
=> \(a^2+b^2\ge2ab\)
Dấu "=" xra <=> a = b
Áp dụng ta có:
a) \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)
dấu "=" xra <=> a = b = c = 1
b) \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge4a.4b.4c.4d=256abcd\)
Dấu "=" xra <=> a = b= c = d = 2
Bài làm:
a) \(\left(a+b+c\right)^2+\left(a-b+c\right)^2+\left(a+b-c\right)^2+\left(b+c-a\right)^2\)
\(=4\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca+ab-bc-ca+ca-bc-ab+bc-ab-ca\right)\)
\(=4\left(a^2+b^2+c^2\right)+2.0\)
\(=4\left(a^2+b^2+c^2\right)\)
b) \(\left(a+b+c\right)^2+a^2+b^2+c^2\)
\(=a^2+b^2+c^2+2\left(ab+bc+ca\right)+a^2+b^2+c^2\)
\(=\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(c^2+2ca+a^2\right)\)
\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)
vô tkhđ coi hình ảnh nếu k hiện