K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

Chứng minh rằng: 2n + 1 và 3n + 1 là hai số nguyên tố cùng nhau. (với n ∈∈ N)

Bài giải:

Gọi d = ƯCLN(2n + 1; 3n + 1)

⇒⎧⎨⎩2n+1⋮d3n+1⋮d⇒{2n+1⋮d3n+1⋮d                        ⇒⎧⎨⎩3(2n+1)⋮d2(3n+1)⋮d⇒{3(2n+1)⋮d2(3n+1)⋮d                        ⇒⎧⎨⎩6n+3⋮d6n+2⋮d⇒{6n+3⋮d6n+2⋮d

⇒⇒ (6n + 3) – (6n + 2) ⋮⋮ d

⇒⇒1 ⋮⋮d

⇒⇒d = 1

Do đó: ƯCLN(2n + 1; 3n + 1) = 1

Vậy hai số 2n + 1 và 3n + 1 là hai số nguyên tố cùng nhau.

Bài 2:

Chứng minh rằng: 2n + 5 và 4n + 12 là hai số nguyên tố cùng nhau. (với n ∈∈ N)

Bài giải:

Gọi d = ƯCLN(2n + 5; 4n + 12)

⇒⎧⎨⎩2n+5⋮d4n+12⋮d⇒{2n+5⋮d4n+12⋮d                        ⇒⎧⎨⎩2(2n+5)⋮d4n+12⋮d⇒{2(2n+5)⋮d4n+12⋮d                        ⇒⎧⎨⎩4n+10⋮d4n+12⋮d⇒{4n+10⋮d4n+12⋮d

⇒⇒ (4n + 12) – (4n + 10) ⋮⋮ d

⇒⇒2 ⋮⋮d

Mà: 2n + 5 là số lẻ nên d = 1

Do đó: ƯCLN(2n + 5; 4n + 12) = 1

Vậy hai số 2n +5 và 4n + 12 là hai số nguyên tố cùng nhau.

Bài 3:

Chứng minh rằng: 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau. (với n ∈∈ N)

Bài giải:

Gọi d = ƯCLN(12n + 1; 30n + 2)

⇒⎧⎨⎩12n+1⋮d30n+2⋮d⇒{12n+1⋮d30n+2⋮d                        ⇒⎧⎨⎩5(12n+1)⋮d2(30n+2)⋮d⇒{5(12n+1)⋮d2(30n+2)⋮d                        ⇒⎧⎨⎩60n+5⋮d60n+4⋮d⇒{60n+5⋮d60n+4⋮d

⇒⇒ (60n + 5) – (60n + 4) ⋮⋮ d

⇒⇒1 ⋮⋮d

⇒⇒d = 1

Do đó: ƯCLN(12n + 1; 30n + 2) = 1

Vậy hai số 12n +1 và 30n +2 là hai số nguyên tố cùng nhau.

Bài 4:

Chứng minh rằng: 2n + 5 và 3n + 7 là hai số nguyên tố cùng nhau. (với n ∈∈ N)

Bài giải:

Gọi d = ƯCLN(2n + 5; 3n + 7) (với d ∈∈N*)

⇒⎧⎨⎩2n+5⋮d3n+7⋮d⇒{2n+5⋮d3n+7⋮d                        ⇒⎧⎨⎩3(2n+5)⋮d2(3n+7)⋮d⇒{3(2n+5)⋮d2(3n+7)⋮d                        ⇒⎧⎨⎩6n+15⋮d6n+14⋮d⇒{6n+15⋮d6n+14⋮d

⇒⇒ (6n + 15) – (6n + 14) ⋮⋮ d

⇒⇒1 ⋮⋮d

⇒⇒d = 1

Do đó: ƯCLN(2n + 5; 3n + 7) = 1

Vậy hai số 2n + 5 và 3n +7 là hai số nguyên tố cùng nhau.

Bài 5:

Chứng minh rằng: 5n + 7 và 3n + 4 là hai số nguyên tố cùng nhau. (với n ∈∈N)

Bài giải:

Gọi d = ƯCLN(5n + 7; 3n + 4) (với d ∈∈N*)

⇒⎧⎨⎩5n+7⋮d3n+4⋮d⇒{5n+7⋮d3n+4⋮d                        ⇒⎧⎨⎩3(5n+7)⋮d5(3n+4)⋮d⇒{3(5n+7)⋮d5(3n+4)⋮d                        ⇒⎧⎨⎩15n+21⋮d15n+20⋮d⇒{15n+21⋮d15n+20⋮d

⇒⇒ (15n + 21) – (15n + 20) ⋮⋮ d

⇒⇒1 ⋮⋮d

⇒⇒d = 1

Do đó: ƯCLN(5n + 7; 3n + 4) = 1

Vậy hai số 5n + 7 và 3n +4 là hai số nguyên tố cùng nhau.

Bài 6:

Chứng minh rằng: 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau. (với n ∈∈N)

Bài giải:

Gọi d = ƯCLN(7n + 10; 5n + 7) (với d ∈∈N*)

⇒⎧⎨⎩7n+10⋮d5n+7⋮d⇒{7n+10⋮d5n+7⋮d                        ⇒⎧⎨⎩5(7n+10)⋮d7(5n+7)⋮d⇒{5(7n+10)⋮d7(5n+7)⋮d                        ⇒⎧⎨⎩35n+50⋮d35n+49⋮d⇒{35n+50⋮d35n+49⋮d

⇒⇒ (35n + 50) – (35n + 49) ⋮⋮ d

⇒⇒1 ⋮⋮d

⇒⇒d = 1

Do đó: ƯCLN(7n + 10; 5n + 7) = 1

Vậy hai số 7n + 10 và 5n +7 là hai số nguyên tố cùng nhau.

6 tháng 12 2019

THANKS BẠN NHA !

a) Gọi \(d\inƯC\left(n+1;2n+3\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Leftrightarrow2n+2-2n-3⋮d\)

\(\Leftrightarrow-1⋮d\)

\(\Leftrightarrow d\inƯ\left(-1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯC\left(n+1;2n+3\right)=\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(n+1;2n+3\right)=1\)

hay n+1 và 2n+3 là cặp số nguyên tố cùng nhau(đpcm)

26 tháng 10 2021

a: \(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\Leftrightarrow d=1\)

Vậy: 2n+3 và 3n+5 là hai số nguyên tố cùng nhau

23 tháng 10 2017

7 tháng 8 2016

a. Gọi d là ƯC của 7n+10 và 5n+7 ta có:

7n+10 chia hết cho d suy ra 35n+50 chia hết cho d

5n+7 chia hết cho d suy ra 35n+49 chia hết d

suy ra (35n+50)-(35n+49) chia hết d

suy ra 1 chia hết d

suy ra d=1

suy ra 7n+10 và 5n+7 nguyên tố cùng nhau

b tương tự như a

ƯC(2n+3,4n+8)=d

2n+3 chia hết d 

4n+8 chia hết d suy ra 2n+4 chia hết d

suy ra (2n+4)-(2n+3) chia hết d

suy ra 1 chia hết d 

suy ra d=1

 suy ra 2n+3 và 4n+8 nguyên tố cùng nhau

7 tháng 8 2016

a) 7n+10 và 5n+7

Gọi d là ƯCLN ( 7n+10,5n+7)

=> 7n+10 chia hết cho d

     5n+7 chia hết cho d

=> 5(7n+10) chia hết cho d

    7(5n+7) chia hết cho d

=> 5(7n+10) - 7(5n+7) chia hết cho d

=> 35n + 50 - 35n+49 chia hết cho d

=>1 chia hết cho d

=> d=1

Vậy 7n+10 và 5n+7 nguyên tố cùng nhau.

Mik mới giải ra câu a) không biết có đúng không.

Các bạn giải câu b) cho mik nhé ^_^