K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 11 2018

1.\(\dfrac{log_ac}{log_{ab}c}=log_ac.log_c\left(ab\right)=log_ac.\left(log_ca+log_cb\right)=log_ac.log_ca+log_ac.log_cb=\dfrac{log_ac}{log_ac}+\dfrac{log_cb}{log_ca}=1+log_ab\)

2. \(log_{ax}bx=\dfrac{log_abx}{log_aax}=\dfrac{log_ab+log_ax}{log_aa+log_ax}=\dfrac{log_ab+log_ax}{1+log_ax}\)

3. \(\dfrac{1}{log_ax}+\dfrac{1}{log_{a^2}x}+...+\dfrac{1}{log_{a^n}x}=log_xa+log_xa^2+...+log_xa^n\)

\(=log_xa+2log_xa+...+n.log_xa=log_xa+2log_xa+...+n.log_xa\)

\(=log_xa.\left(1+2+...+n\right)=\dfrac{n\left(n+1\right)}{2}log_xa=\dfrac{n\left(n+1\right)}{2.log_ax}\)

4 tháng 5 2016

Theo công thức biến đổi có số ta có : \(\log_{a^n}x=\frac{\log_ax}{\log_aa^n}=\frac{1}{n}\log_ax\)

Từ đó ta có :

      \(A=\frac{1}{\log_ax}+\frac{1}{\log_{a^2}x}+\frac{1}{\log_{a^3}x}+...+\frac{1}{\log_{a^n}x}\)

          \(=\frac{1}{\log_ax}+\frac{2}{\log_ax}+\frac{4}{\log_ax}+...+\frac{n}{\log_ax}\)

          \(=\frac{1+2+3+...+n}{\log_ax}=\frac{n\left(n+1\right)}{\log_ax}\)

Vậy \(A=\frac{1}{\log_ax}+\frac{1}{\log_{a^2}x}+\frac{1}{\log_{a^3}x}+...+\frac{1}{\log_{a^n}x}=\frac{n\left(n+1\right)}{\log_ax}\)

5 tháng 5 2016

Từ giả thiết ta thấy tất cả các biểu thức đều xác định :

Ta có : \(\log_ax=1+\log_ax.\log_az\Leftrightarrow\log_ax=\frac{1}{1-\log_az}=\frac{1}{1-\log_a\frac{a}{z}}=\log_{\frac{a}{z}}z\)

Do đó \(\log_xa.\log_{\frac{a}{z}}z=1\)

Tương tự \(\log_ya.\log_{\frac{a}{x}}x=1\)

Hơn nữa, thay \(\log_ax=\frac{1}{1-\log_az}\) vào \(\log_ay=1+\log_ay.\log_ax\), ta được :

\(\log_ay=1+\frac{\log_ay}{1-\log_az}\Leftrightarrow1-\log_az=\frac{\log_ay}{\log_ay-1}\)

                                \(\Leftrightarrow\log_za=1+\log_ay.\log_az\)

Tương tự như trên ta cũng có :

                                          \(\log_za.\log_{\frac{a}{y}}y=1\)

Từ đó suy ra :

\(A=\left(\log_{\frac{a}{x}}a.\log_ya\right)\left(\log_{\frac{a}{y}}a.\log_za\right)\left(\log_{\frac{a}{z}}a.\log_xa\right)=1\)

GV
27 tháng 4 2017

a) Áp dụng công thức: \(\log_ab.\log_bc=\log_ac\)

b) Vì \(\dfrac{1}{\log_{a^k}b}=\dfrac{1}{\dfrac{1}{k}\log_ab}=\dfrac{k}{\log_ab}\) nên biểu thức vế trái bằng:

\(VT=\dfrac{1}{\log_ab}\left(1+2+...+n\right)\)

\(=\dfrac{1}{\log_ab}.\dfrac{n\left(n+1\right)}{2}=VP\)

11 tháng 4 2017

Ôn tập chương II

NV
14 tháng 1 2022

ĐKXĐ: \(x>\dfrac{1}{2}\)

\(log_{\dfrac{1}{2}}\left(\dfrac{x+1}{2x-1}\right)< 2\)

\(\Rightarrow\dfrac{x+1}{2x-1}>\dfrac{1}{4}\)

\(\Rightarrow x>-\dfrac{5}{2}\)

Kết hợp ĐKXĐ: \(\Rightarrow x>\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
12 tháng 11 2017

Câu 1:

Để ý rằng \((2-\sqrt{3})(2+\sqrt{3})=1\) nên nếu đặt

\(\sqrt{2+\sqrt{3}}=a\Rightarrow \sqrt{2-\sqrt{3}}=\frac{1}{a}\)

PT đã cho tương đương với:

\(ma^x+\frac{1}{a^x}=4\)

\(\Leftrightarrow ma^{2x}-4a^x+1=0\) (*)

Để pt có hai nghiệm phân biệt \(x_1,x_2\) thì pt trên phải có dạng pt bậc 2, tức m khác 0

\(\Delta'=4-m>0\Leftrightarrow m< 4\)

Áp dụng hệ thức Viete, với $x_1,x_2$ là hai nghiệm của pt (*)

\(\left\{\begin{matrix} a^{x_1}+a^{x_2}=\frac{4}{m}\\ a^{x_1}.a^{x_2}=\frac{1}{m}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^{x_2}(a^{x_1-x_2}+1)=\frac{4}{m}\\ a^{x_1+x_2}=\frac{1}{m}(1)\end{matrix}\right.\)

Thay \(x_1-x_2=\log_{2+\sqrt{3}}3=\log_{a^2}3\) :

\(\Rightarrow a^{x_2}(a^{\log_{a^2}3}+1)=\frac{4}{m}\)

\(\Leftrightarrow a^{x_2}(\sqrt{3}+1)=\frac{4}{m}\Rightarrow a^{x_2}=\frac{4}{m(\sqrt{3}+1)}\) (2)

\(a^{x_1}=a^{\log_{a^2}3+x_2}=a^{x_2}.a^{\log_{a^2}3}=a^{x_2}.\sqrt{3}\)

\(\Rightarrow a^{x_1}=\frac{4\sqrt{3}}{m(\sqrt{3}+1)}\) (3)

Từ \((1),(2),(3)\Rightarrow \frac{4}{m(\sqrt{3}+1)}.\frac{4\sqrt{3}}{m(\sqrt{3}+1)}=\frac{1}{m}\)

\(\Leftrightarrow \frac{16\sqrt{3}}{m^2(\sqrt{3}+1)^2}=\frac{1}{m}\)

\(\Leftrightarrow m=\frac{16\sqrt{3}}{(\sqrt{3}+1)^2}=-24+16\sqrt{3}\) (thỏa mãn)

AH
Akai Haruma
Giáo viên
12 tháng 11 2017

Câu 2:

Nếu \(1> x>0\)

\(2017^{x^3}>2017^0\Leftrightarrow 2017^{x^3}>1\)

\(0< x< 1\Rightarrow \frac{1}{x^5}>1\)

\(\Rightarrow 2017^{\frac{1}{x^5}}> 2017^1\Leftrightarrow 2017^{\frac{1}{x^5}}>2017\)

\(\Rightarrow 2017^{x^3}+2017^{\frac{1}{x^5}}> 1+2017=2018\) (đpcm)

Nếu \(x>1\)

\(2017^{x^3}> 2017^{1}\Leftrightarrow 2017^{x^3}>2017 \)

\(\frac{1}{x^5}>0\Rightarrow 2017^{\frac{1}{x^5}}>2017^0\Leftrightarrow 2017^{\frac{1}{5}}>1\)

\(\Rightarrow 2017^{x^3}+2017^{\frac{1}{x^5}}>2018\) (đpcm)

4 tháng 1 2021

Ta có: 

\(\left(b-\dfrac{1}{2}\right)^2\ge0\) <=> \(b^2-b+\dfrac{1}{4}\ge0\) <=>\(b-\dfrac{1}{4}\le b^2\)

Mà : 

a<1 => \(log_a\left(b-\dfrac{1}{4}\right)\ge log_ab^2=2log_ab\)

P=\(log_a\left(b-\dfrac{1}{4}\right)-\dfrac{1}{2}log_{\dfrac{a}{b}}b=log_a\left(b-\dfrac{1}{4}\right)-\dfrac{1}{2}.\dfrac{log_ab}{1-log_ab}\ge2log_ab-\dfrac{1}{2}.\dfrac{log_ab}{1-log_ab}\)

Đặt t=logab

Do b<a<1 => t=logab >1

Khi đó \(P\ge2t+\dfrac{t}{2t-2}=f\left(t\right)\). Khảo sát f(t) trên (1;+\(\infty\)) ta đc

P\(\ge\)f(t) \(\ge\) f\(\left(\dfrac{3}{2}\right)\) = \(\dfrac{9}{2}\)