K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2021

a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)

\(\Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2\Leftrightarrow x^2+y^2\ge2xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\left(đúng\right)\)

b) \(x^3+y^3\ge\dfrac{\left(x+y\right)^3}{4}\)

\(\Leftrightarrow4x^3+4y^3\ge\left(x+y\right)^3\Leftrightarrow3x^3+3y^3\ge3x^2y+3xy^2\)

\(\Leftrightarrow3x^2\left(x-y\right)-3y^2\left(x-y\right)\ge0\)

\(\Leftrightarrow3\left(x-y\right)\left(x^2-y^2\right)\ge0\Leftrightarrow3\left(x-y\right)^2\left(x+y\right)\ge0\left(đúng\right)\)

 

a: Ta có: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)

\(\Leftrightarrow2x^2+2y^2-x^2-2xy-y^2\ge0\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)

4 tháng 7 2018

1/ chuyển vế đổi dấu ta có: \(x^2-2xy+y^2=(x-y)^2\)

Mà một cái bình phương luôn luôn lớn hơn hoặc bằng 0 => BĐT ban đầu đúng

2/ Chứng minh x2y2(x2+y2) 2 - Bất đẳng thức và cực trị - Diễn đàn Toán học

3/ ...

25 tháng 9 2021

\(1,A=5^{n+2}+26\cdot5^n+8^{2n+1}\\ A=5^n\cdot25+26\cdot5^n+8\cdot8^{2n+1}\\ A=51\cdot5^n+8\cdot64^n\)

Ta có \(64:59R5\Rightarrow64^n:59R5\)

Vì vậy \(51\cdot5^n+8\cdot64^n:59R=5^n\cdot51+8\cdot5^n=5^n\left(51+8\right)=5^n\cdot59⋮59\)

Vậy \(A⋮59\)

(\(R\) là dư)

\(2,\\ a,2x\ge0;\left(x+2\right)^2\ge0,\forall x\\ \Leftrightarrow P=\dfrac{\left(x+2\right)^2}{2x}\ge0\\ P_{min}=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

 

cho hỏi là x=-2 thì x đâu còn \(\ge\) 0 nữa

AH
Akai Haruma
Giáo viên
6 tháng 5 2021

Lời giải:

Đặt $\frac{x}{a}=m; \frac{y}{b}=n; \frac{z}{c}=p$ với $m,n,p>0$.

BĐT cần chứng minh tương đương với:

(m^2a+n^2b+p^2c)(a+b+c)\geq (am+bn+cp)^2$

$\Leftrightarrow m^2(ab+ac)+n^2(ba+bc)+p^2(ca+cb)\geq 2abmn+2amcp+2bncp$

$\Leftrightarrow ab(m^2-2mn+n^2)+bc(n^2-2np+p^2)+ca(m^2-2mp+p^2)\geq 0$

$\Leftrightarrow ab(m-n)^2+bc(n-p)^2+ca(m-p)^2\geq 0$ 

(luôn đúng với $a,b,c>0$)

Ta có đpcm.

1 tháng 8 2017

a)Áp dụng BĐT AM-GM ta có:

\(\left(\sqrt{x}+\sqrt{y}\right)^2=x+y+2\sqrt{xy}\)

\(\ge2\sqrt{\left(x+y\right)\cdot2\sqrt{xy}}=VP\)

Xảy ra khi \(x=y\)

b)\(BDT\Leftrightarrow x+y+z+t\ge4\sqrt[4]{xyzt}\)

Đúng với AM-GM 4 số

Xảy ra khi \(x=y=z=t\)

10 tháng 4 2017

5. phân tích ra : \(1+\dfrac{a}{b}+\dfrac{b}{a}+1\)

áp dụng bđ cosy

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

=> đpcm

6. \(x^2-x+1=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

hay với mọi x thuộc R đều là nghiệm của bpt

7.áp dụng bđt cosy

\(a^4+b^4+c^4+d^4\ge2\sqrt{a^2.b^2.c^2.d^2}=4abcd\left(đpcm\right)\)

10 tháng 4 2017

1. (a-b)2>=0

=> a2+b2-2ab>=0

2. (a-b)2>=0

=> a2+b2>=2ab

=> \(\dfrac{a^2 +b^2}{2}\ge ab\)

3.Ta phích ra thôi,ta được : a2+2a < a2+2a+1

=> cauis trên đúng

1 tháng 4 2018

\(\dfrac{a^2}{x}+\dfrac{b^2}{y}\ge\dfrac{\left(a+b\right)^2}{x+y}\)

\(\Leftrightarrow a^2y.\left(x+y\right)+b^2x.\left(x+y\right)\ge xy\left(a+b\right)^2\)

\(\Leftrightarrow a^2xy+a^2y^2+b^2x^2+b^2xy\ge a^2xy+2abxy+b^2xy\)

\(\Leftrightarrow a^2y^2-2abxy+b^2x^2+a^2xy-a^2xy+b^2xy-b^2xy\ge0\)

\(\Leftrightarrow\left(ay-bx\right)^2\ge0\)

Dấu bằng xảy ra khi\(\dfrac{a}{x}=\dfrac{b}{y}\)

1 tháng 4 2018

Xét hiệu:

\(\dfrac{a^2}{x}+\dfrac{b^2}{y}-\dfrac{\left(a+b\right)^2}{x+y}\)

\(=\dfrac{a^2.y\left(x+y\right)}{xy\left(x+y\right)}+\dfrac{b^2x\left(x+y\right)}{xy\left(x+y\right)}-\dfrac{xy\left(a+b\right)^2}{xy\left(x+y\right)}\)

\(=\dfrac{a^2xy+a^2y^2+b^2x^2+b^2xy-a^2xy-2abxy-b^2xy}{xy\left(x+y\right)}\)

\(=\dfrac{a^2y^2-2abxy+b^2x^2}{xy\left(x+y\right)}\)

\(=\dfrac{\left(ay-bx\right)^2}{x^2y+xy^2}\ge0\)

=> BĐT luôn đúng