Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai số lẻ liên tiếp là (2k + 1) và (2k + 3) ta có
(2k + 3)2 - (2k + 1)2 = 2(4k + 4) = 8(k + 1)
Vậy nó chia hết cho 8
Gọi 4 stn liên tiếp là k, k+1, k+2, k+3
Ta có k(k+1)(k+2)(k+3)+1
= k(k+3)(k+1)(k+2)+1
= (k2 +3k)(k2 +3k+2)+1
Đặt k2 +3k = A
= A(A+2)+1
= A2 +2A + 1
= (A+1)2 => đpcm
#)Giải :
Gọi bốn số tự nhiên liên tiếp là a, a+1, a+2, a+3
Theo đề bài, ta có : \(a\left(a+1\right)\left(a+2\right)\left(a+3\right)+1\)
\(=\left(a^2+3a\right)\left(a^2+3a+2\right)+1\)
\(=\left(a^3+3a+1-1\right)\left(a^3+3a+1+1\right)-1\)
\(=\left(a^3+3a+1\right)^2-1^2-1\)
\(=\left(a^3+3a+1\right)^2\left(đpcm\right)\)
Em tham khảo tại đây nhé:
Câu hỏi của Trang Đoàn - Toán lớp 8 - Học toán với OnlineMath
Vì 2A = 2.1.3.5.....2011
Dễ thấy 2A chia hết cho 2 mà không chia hết cho 4
=> 2A không là bình phương của 1 số nguyên nào
VÌ 2A là chẵn => 2A - 1 lẻ, mà 2A- 1 ko chia hết cho 3, 5, 7,...,2011
( vì 2A chia hết cho các số đó)
Tương tự vậy ta thấy ngay 2A-1, 2A không là bình phương cảu bất kì số nguyên nào
Gọi số đó là x
Ta có:
x2=4x3 =>x2-4x3=0
=>x2(1-4x)=0
=>x2=0 hoặc 1-4x=0
=>x=0 hoặc \(x=\frac{1}{4}\)
Vậy....
Ta gọi :3SND lần lượt là\(N,N+1,N+2\left(N\in Z\right)\)
\(N\left(N+1\right)\left(N+2\right)=\left(N^2+N\right)\left(N+2\right)=N^3+2N^2+N^2+2N=N^3+3N^2+2N\)
\(N^3< N^3+3N^2+2N< N^3+3N^2+3N+1\)
\(\Rightarrow N^3< N^3+3N^2+2N< \left(N+1\right)^3\left(1\right)\)
Vì \(N\)là SND nên từ \(\left(1\right)\)
Ta có:\(n\left(n+1\right)\left(n+2\right)\)ko là LP của 1 STN
loi giai cua hs lop6 lên 7vnen, moi chị tham khảo:
goi x la số chẵn, số lẻ sẽ là x+1 ta có;
(x+1)2 = x.x + 2x + 1
x chẵn nên x chia het cho 2 => x.x chi het cho 4
và 2x chia het cho 4
đương nhiên x.x + 2x chi het cho 4
và x.x + 2x chia het cho 4 và x.x+2x+1 chia cho 4 dư 1 (dpcm)