K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 8 2021

\(\left|\sqrt{3}sinx+cosx\right|=2\left|\dfrac{\sqrt{3}}{2}sinxx+\dfrac{1}{2}cosx\right|=2\left|sin\left(x+\dfrac{\pi}{6}\right)\right|\le2\)

Đề bài sai 

NV
5 tháng 6 2020

\(\frac{2sin^2\frac{x}{2}+sin2x-1}{2sinx-1}+sinx=\frac{1-cosx+2sin2x.cosx-1}{2sinx-1}+sinx\)

\(=\frac{cosx\left(2sinx-1\right)}{2sinx-1}+sinx=cosx+sinx\)

\(=\sqrt{2}\left(\frac{\sqrt{2}}{2}sinx+\frac{\sqrt{2}}{2}cosx\right)=\sqrt{2}\left(sinx.cos\frac{\pi}{4}+cosx.sin\frac{\pi}{4}\right)\)

\(=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)

NV
25 tháng 4 2019

Với điều kiện \(a;b>0\)

\(P=8\left(a+4\right)+b+\frac{4b}{a}\ge8.2\sqrt{4a}+2\sqrt{b.\frac{4b}{a}}\)

\(P\ge32\sqrt{a}+\frac{4b}{\sqrt{a}}\ge2\sqrt{32.4.\frac{b\sqrt{a}}{\sqrt{a}}}=16\sqrt{2b}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=4\\b=32\end{matrix}\right.\)

NV
7 tháng 5 2019

\(\frac{sin^2x+cos^2x+2sinx.cosx}{sinx+cosx}-\left(1-tan^2\frac{x}{2}\right).cos^2\frac{x}{2}\)

\(=\frac{\left(sinx+cosx\right)^2}{sinx+cosx}-\left(cos^2\frac{x}{2}-sin^2\frac{x}{2}\right)\)

\(=sinx+cosx-cosx=sinx\)

\(sin^4x+cos^4\left(x+\frac{\pi}{4}\right)=\left(\frac{1}{2}-\frac{1}{2}cos2x\right)^2+\left(\frac{1}{2}+\frac{1}{2}cos\left(2x+\frac{\pi}{2}\right)\right)^2\)

\(=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}cos^22x+\left(\frac{1}{2}-\frac{1}{2}sin2x\right)^2\)

\(=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}cos^22x+\frac{1}{4}-\frac{1}{2}sin2x+\frac{1}{4}sin^22x\)

\(=\frac{1}{4}-\frac{1}{2}\left(cos2x+sin2x\right)+\frac{1}{4}\left(cos^22x+sin^22x\right)\)

\(=\frac{3}{4}-\frac{\sqrt{2}}{2}sin\left(2x+\frac{\pi}{4}\right)\)

7 tháng 5 2019

Cho em ngay dòng đầu tiên của câu b ấy ạ, tại sao tách ra thế dược ạ ?

NV
16 tháng 5 2019

\(\frac{sin2x-cosx}{2sinx-1}+sinx=\frac{2sinx.cosx-cosx}{2sinx-1}+sinx\)

\(=\frac{cosx\left(2sinx-1\right)}{2sinx-1}+sinx=cosx+sinx=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)

21 tháng 4 2020

\(VT=\frac{1-cosx}{sinx}\left[\frac{\left(1+cosx\right)^2}{sin^2x}-1\right]\)

\(=\frac{1-cosx}{sinx}.\left[\frac{2\left(1+cosx\right)-sin^2x}{sin^2x}-1\right]\)

\(=\frac{2\left(1-cos^2x\right)}{sin^3x}-\frac{2\left(1-cosx\right)}{sinx}\)

\(=\frac{2}{sinx}-\frac{2-2cosx}{sinx}\)

\(=\frac{2cosx}{sinx}=2cotx\)

15 tháng 4 2021

\(A=\dfrac{\sqrt{2}.cosx-2cos\left(\dfrac{\pi}{4}+x\right)}{-\sqrt{2}.sinx+2sin\left(\dfrac{\pi}{4}+x\right)}\)

\(=\dfrac{\sqrt{2}.cosx-2\left(cos\dfrac{\pi}{4}.cosx-sin\dfrac{\pi}{4}.sinx\right)}{-\sqrt{2}.sinx+2\left(sin\dfrac{\pi}{4}.cosx+cos\dfrac{\pi}{4}.sinx\right)}\)

\(=\dfrac{\sqrt{2}.cosx-\sqrt{2}.cosx+\sqrt{2}.sinx}{-\sqrt{2}.sinx+\sqrt{2}.cosx+\sqrt{2}.sinx}\)

\(=\dfrac{\sqrt{2}.sinx}{\sqrt{2}.cosx}=tanx\)

29 tháng 4 2020

\(a,\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4sin^2x.cos^2x}=-1\)

\(VT=\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4.sin^2x.cos^2x}=\left(\frac{1}{tan2x}\right)^2-\frac{1}{sin^22x}=\left(\frac{cos2x}{sin2x}\right)^2-\frac{1}{sin^22x}=\frac{cos^22x-1}{sin^22x}=\frac{-sin^22x}{sin^22x}=-1=VP\)

b, \(VT=\frac{cos^2x-sin^2x}{sin^4x+cos^4x-sin^2x}=\frac{cos2x}{\left(sin^2x+cos^2x\right)^2-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{1-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{cos^2x-2.sin^2x.cos^2x}\)

=\(\frac{cos2x}{cos^2x.\left(1-2.sin^2x\right)}=\frac{cos2x}{cos^2x.cos2x}=\frac{1}{cos^2x}=1+tan^2x=VP\)

d, \(VT=\left(\frac{cosx}{1+sinx}+tanx\right).\left(\frac{sinx}{1+cosx}+cotx\right)=\left(\frac{cosx}{1+sinx}+\frac{sinx}{cosx}\right).\left(\frac{sinx}{1+cosx}+\frac{cosx}{sinx}\right)\)

\(=\left(\frac{cos^2x+sinx.\left(1+sinx\right)}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx.\left(1+cosx\right)}{sinx.\left(1+cosx\right)}\right)=\left(\frac{cos^2x+sinx+sin^2x}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx+cos^2x}{sinx.\left(1+cosx\right)}\right)\)

=\(\frac{1}{cosx.sinx}=VP\)

e, \(VT=cos^2x.\left(cos^2x+2sin^2x+sin^2x.tan^2x\right)=cos^2x.\left(1+sin^2x.\left(1+tan^2x\right)\right)=cos^2x.\left(1+tan^2x\right)=cos^2x.\frac{1}{cos^2x}=1=VP\)

c, \(VT=\frac{sin^2x}{cosx.\left(1+tanx\right)}-\frac{cos^2x}{sinx.\left(1+cosx\right)}=\frac{sin^3x.\left(1+cosx\right)-cos^3x.\left(1+tanx\right)}{sinx.cosx.\left(1+tanx\right).\left(1+cosx\right)}\)

=\(\frac{sin^3x+sin^3x.cotx-cos^3x-cos^3.tanx}{\left(sinx+cosx\right)^2}=\frac{sin^3x+sin^2xcosx-cos^3x-cos^2sinx}{\left(sinx+cosx\right)^2}=\frac{sin^2x.\left(sinx+cosx\right)-cos^2x.\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}\)

\(=\frac{\left(sin^2x-cos^2x\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=\frac{\left(sinx-cosx\right).\left(sinx+cosx\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=sinx-cosx=VP\)

Đây nha bạn