Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lần sau bạn post riêng từng bài bạn nhé! để ai làm được bài nào thì làm! 2 bài dài quá!!!
1. Giải phương trình:
\(\left|x^2+x+1\right|+\left|3x^2+x-4\right|=x^2+2\)(1)
- \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\Rightarrow\left|x^2+x+1\right|=x^2+x+1\)
(1) \(\Leftrightarrow x^2+x+1+\left|3x+4\right|\cdot\left|x-1\right|=x^2+2\)
\(\Leftrightarrow\left|3x+4\right|\cdot\left|x-1\right|=1-x\)(2)
- Nếu x>1 thì không phải là nghiệm của (2) vì VP(2)>=0 còn VT(2)<0
- Nếu x<=1 thì |x-1| = 1-x. Do đó:
(2) \(\Leftrightarrow\left|3x+4\right|\cdot\left(1-x\right)=1-x\Leftrightarrow\left(1-x\right)\left(\left|3x+4\right|-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}1-x=0\\\left|3x+4\right|=1\end{cases}\Rightarrow x=1;x=-1;x=-\frac{5}{3}\left(TMDK:x\le1\right)}\)
Vậy PT có 3 nghiệm là: -5/3;-1;1.
b) Tìm các số nguyên x để:
\(N=x^2-6x-6\)là số chính phương.
\(N=x^2-6x+9-15=\left(x-3\right)^2-15\)
N là số chính phương nên: \(N=y^2=\left(x-3\right)^2-15\Rightarrow\left(x-3\right)^2-y^2=15\)
\(\Rightarrow\left(x-3-y\right)\left(x-3+y\right)=15\)
\(\Rightarrow\left(x-y-3\right)\left(x+y-3\right)=15\)
Mà x;y thuộc Z nên (x-y-3) và (x+y-3) là ước của 15.
Ta có bảng sau:
x-y-3 | x+y-3 | x-y | x+y | y | x | Ghi chú |
-15 | -1 | -12 | 2 | 7 | -5 | TM |
-5 | -3 | -2 | 0 | 1 | -1 | TM |
-3 | -5 | 0 | -2 | -1 | -1 | TM |
-1 | -15 | 2 | -12 | -7 | -5 | TM |
1 | 15 | 4 | 18 | 7 | 11 | TM |
3 | 5 | 6 | 8 | 1 | 7 | TM |
5 | 3 | 8 | 6 | -1 | 7 | TM |
15 | 1 | 18 | 4 | -7 | 11 | TM |
Kết luận:Có 4 giá trị của x là: -5;-1;7;11 thì N là số chính phương.
Đinh Thùy Linh Mình xem qua bài giải 1) của bạn, hình như bạn nhầm chỗ này :
\(\left|3x+4\right|.\left|x-1\right|=1-x\)
- Nếu \(x>1\)ta có VT >0 , VP < 0 suy ra điều vô lí
- Nếu \(x\le1\)......................
- Với \(m=0\Rightarrow x=-2\) thỏa mãn
- Với \(m\ne0\)
\(\Delta'=\left(m-1\right)^2-m\left(m-4\right)=2m+1\)
Pt có nghiệm hữu tỉ khi và chỉ khi \(2m+1\) là số chính phương
Mà \(2m+1\) lẻ \(\Rightarrow2m+1\) là SCP lẻ
\(\Rightarrow2m+1=\left(2k+1\right)^2\) với \(k\in N\)
\(\Rightarrow m=2k\left(k+1\right)\)
Vậy với \(m=2k\left(k+1\right)\) (với \(k\in N\)) thì pt có nghiệm hữu tỉ
Ta có: A=(n2+3n)(n2+3n+2)
Đặt n2+3n=x ==>A=x(x+2)=x2+2x
Theo bài ra A là scp ==>x2+2x là SCP
Mà x2+2x+1 cũng là SCP
Hai SCP liên tiếp chỉ có thể là 0và1 ==>A=0==>x=0==>n2+3n=0<=>n=0
cho mik nhé
Ta có A = n(n+3)(n+1)(n+2) = (n2 + 3n)(n2 + 2n + 2)
Đặt n2 + 3n = t thì
A = t(t+2)
Ta có t2 < t2 + 2t = A < (t + 1)2 = t2 + 2t + 1
Giữa hai số chính phương liên tiếp không tồn tại 1 số chính phương
Vậy A không phải là số chính phương