K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2019

Ta có: \(\frac{1}{2^2}>0\)

           \(\frac{1}{3^2}>0\)

          ................

           \(\frac{1}{2019^2}>0\)

\(\Rightarrow A>1+0\)

\(\Rightarrow A>1\left(1\right)\)

Lại có: \(\frac{1}{2^2}< \frac{1}{1.2}\)

            \(\frac{1}{3^2}< \frac{1}{2.3}\)

               .................

               \(\frac{1}{2019^2}< \frac{1}{2018.2019}\)

\(\Rightarrow A< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2018.2019}\)

Đặt \(S=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2018.2019}\)

 \(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\)

 \(S=1-\frac{1}{2019}< 1\)

\(\Rightarrow S< 1\)

\(\Rightarrow A< 1+1\)

\(\Rightarrow A< 2\left(2\right)\)

Từ (1) và (2) \(\Rightarrow1< A< 2\)

\(\Rightarrow A\notin\)N*

12 tháng 5 2019

đề bài yêu cầu là c/m a\(\inℕ^∗\)mà, sao bn Lê Tài Bảo Châu lại đi c/m nó \(\notinℕ^∗\)

hay là đề bài có sai à

4 tháng 2 2020

Bài 1 :

Ta có : \(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

\(=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)

\(=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

Ta chứng minh BĐT \(\frac{x}{y}+\frac{y}{x}\ge2,\forall x,y>0\)

Thật vậy : BĐT \(\Leftrightarrow\frac{x}{y}+\frac{y}{x}-2=\frac{\left(x-y\right)^2}{xy}\ge0\) ( đúng )

Vậy \(\frac{x}{y}+\frac{y}{x}\ge2,\forall x,y>0\)

Áp dụng vào bài toán ta có : \(S\ge2+2+2=6\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Vậy min \(S=6\) tại \(a=b=c\)

23 tháng 3 2019

Ta có :

\(A=\frac{1}{3^2}+\frac{1}{5^2}+...+\frac{1}{2019^2}< \frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2018.2020}\)

Cho \(S=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2018.2020}\)

\(\Rightarrow S=\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2018.2020}\right)\)

\(\Leftrightarrow S=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2018}-\frac{1}{2020}\right)\)

\(\Leftrightarrow S=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2020}\right)=\frac{1009}{4040}< \frac{1}{2}\)

Mà A < S ⇒ đpcm

22 tháng 3 2019

bài này lm kiểu j vậy bạn

Y
18 tháng 4 2019

\(5A=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{99}{5^{99}}\)

\(A=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{99}{5^{100}}\)

\(\Rightarrow4A=5A-A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{99}}-\frac{99}{5^{100}}\)

Đặt \(B=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)

Khi đó \(4A=B-\frac{99}{5^{100}}< B\)

\(5B=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}\)

\(B=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}+\frac{1}{5^{99}}\)

\(\Rightarrow4B=5B-B=1-\frac{1}{5^{99}}\)

\(\Rightarrow B=\frac{1}{4}-\frac{1}{4\cdot5^{99}}< \frac{1}{4}\)

\(\Rightarrow4A < B\Rightarrow4A< \frac{1}{4}\)

\(\Rightarrow A< \frac{1}{16}\) ( đpcm )

Y
18 tháng 4 2019

2. \(M=\left(1+\frac{1}{3}+...+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(M=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(M=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)

\(M=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2019}\)

\(\Rightarrow\left(M-N\right)^3=0\)

20 tháng 7 2020

5A=\(\frac{1}{5}+\frac{2}{5^2}...+\frac{n}{5^n}...+\frac{11}{5^{11}}\)

=>4A=5A-A=\(\frac{1}{5}+\frac{1}{5^2}...+\frac{1}{5^{11}}-\frac{11}{5^{12}}\)

=>20A=\(1+\frac{1}{5}+...+\frac{1}{5^{10}}-\frac{11}{5^{11}}\)

=>16A=20A-4A=\(1-\frac{1}{5^{11}}+\frac{11}{5^{12}}-\frac{11}{5^{11}}\)

Mà \(1-\frac{1}{5^{11}}< 1\),\(\frac{11}{5^{12}}-\frac{11}{5^{11}}< 0\)

=>16A<1

Do đó: A<1/16(đpcm)

22 tháng 2 2023

cho địt t trả lời

 

11 tháng 5 2020

Ta có bài toán tổng quát sau:Chứng minh rằng tổng \(A=\frac{n+1}{n^2+1}+\frac{n+1}{n^2+2}+....+\frac{n+1}{n^2+n}\)(n số hạng và n>1) không phải là số nguyên dương ta có:

\(1=\frac{n+1}{n^2+1}+\frac{n+1}{n^2+2}+...+\frac{n+1}{n^2+3}< \frac{n+1}{n^2+1}+\frac{n+1}{n^2+2}+....+\frac{n+1}{n^2+n}< \frac{n+1}{n^2}+\frac{n+1}{n^2}\)\(+....+\frac{n+1}{n^2}=2\)

Do đó A không phải là số nguyên dương với n=2019 thì ta có bài toán đã cho

22 tháng 2 2018

Ta có : 

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2011^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2010.2011}\)\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}=1-\frac{1}{2011}=\frac{2010}{2011}>\frac{2010}{2680}=\frac{3}{4}\)

Hình như có gì đó sai sai :')

22 tháng 2 2018

A+1/4=1/2+1/32+......+1/20112

A+1/4<1/2+1/2*3 +1/3*4 +....1/2010*2011

A+1/4<1-1/2011<1=3/4+1/4

A<1/4 (ĐPCM)

\(\frac{2}{7}< \frac{x}{3}< \frac{11}{4};x\inℕ\)

=>\(\frac{12.2}{84}< \frac{28x}{84}< \frac{11.21}{84}\)

=>\(\frac{24}{84}< \frac{28x}{84}< \frac{231}{84}\)

=>24<28x<231

=>28x\(\in\){25;26;27;28;.............................;230}

=>Các số chia hết cho 28 là:28;56;84;112;140;168;196;224

=>x (thỏa mãn)\(\in\){1;2;3;4;5;6;7;8}

Vậy x\(\in\) {1;2;3;4;5;6;7;8}

\(\left(4,5m-\frac{3}{4}.5\frac{1}{3}\right).\frac{1}{12}+\frac{1}{2}x=1\frac{1}{2}\)

\(\left(4,5m-\frac{3}{4}.\frac{16}{3}\right).\frac{1}{2}.\frac{1}{6}+\frac{1}{2}x=\frac{3}{2}\)

\(\left(4,5m-\frac{48}{12}\right).\frac{1}{2}.\left(\frac{1}{6}+x\right)=\frac{3}{2}\)

\(\left(4,5m-4\right).\left(\frac{1}{6}+x\right)=\frac{3}{2}:\frac{1}{2}\)

\(\left(4,5m-4\right).\left(\frac{1}{6}+x\right)=\frac{3}{2}.\frac{2}{1}\)

\(\left(4,5m-4\right).\left(\frac{1}{6}+x\right)=\frac{6}{2}\)

\(\left(4,5m-4\right).\left(\frac{1}{6}+x\right)=3\)

=>3\(⋮\)\(\frac{1}{6}+x\)

=>\(\frac{1}{6}+x\)\(\in\)Ư(3)={\(\pm\)1;\(\pm\)3}

Ta có bảng:

\(\frac{1}{6}+x\)-11-33
x\(-1\frac{1}{6}\)\(1\frac{1}{6}\)\(-3\frac{1}{6}\)3\(\frac{1}{6}\)

Vậy x\(\in\){\(-1\frac{1}{6}\);\(1\frac{1}{6}\);\(-3\frac{1}{6}\);\(\frac{1}{6}\)}

Chúc bn học tốt