Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=4^2004+4^2003+...+4^2+4+1
4B = 4^2005+4^2004+...+4^2+4
=> 4B-B = (4^2005+4^2004+...4^3+4^2+4) - (4^2004+4^2003+...+4^2+4+1)
=> 3B = 4^2005 - 1 => B = (4^2005 - 1)/3
=> A = 75 (4^2005 - 1)/3 +25
= 25 (4^2005 -1) +25
= 25 x 4 ^ 2005
= 25 x 4 x 4 ^ 2004 = 100 x4 ^ 2004 chia hết cho 100 ( Vì 100 chia hết cho 100 )
Ta có A = 75 ( 4^ 2013+4^2012+...+4^2+4+1)+25
= 75( 4^ 2013+4^2012+...+4^2+4) +75 +25
= 75[4(4^2012+...+4^2+4+1)] +100
= 300(4^2012+...+4^2+4+1) +100
= 100 [3(4^2012+...+4^2+4+1) + 1 ] chia hết cho 100 (Đ.P.C.M)
=
đặt \(S=1+4+4^2+......+4^{1999}\)
\(\Rightarrow4S=4+4^2+4^3+....+4^{2000}\)
\(\Rightarrow4S-S=\left(4+4^2+4^3+....+4^{2000}\right)-\left(1+4+4^2+.....+4^{1999}\right)\)
\(\Rightarrow3S=4^{2000}-1\Rightarrow S=\frac{4^{2000}-1}{3}\)
Khi đó \(A=75.S=75.\frac{4^{2000}-1}{3}=\frac{75.\left(4^{2000}-1\right)}{3}=\frac{75}{3}.\left(4^{2000}-1\right)=25.\left(4^{2000}-1\right)=25.4^{2000}-25\)
Ta có: 42000-1=(44)500-1=(...6)-1=....5
=>25.42000-25=25.(....5)-25=(...5)-25=....0 chia hết cho 100
Vậy ta có điều phải chứng minh
75 chia hết cho 25.
42007 + ... + 4 + 1 chia 4 dư 1 hay không chia hết cho 4
=> 75(42007 + ... + 4 + 1) không chia hết cho 100.
Đặt \(B=1+4+4^2+...+4^{1998}+4^{1999}\)
\(\Rightarrow4B=4+4^2+4^3+...+4^{1999}+4^{2000}\)
\(\Rightarrow4B-B=\left(4+4^2+4^3+...+4^{2000}\right)-\left(1+4+4^2+...+4^{1999}\right)\)
\(\Rightarrow3B=4^{2000}-1\)
\(\Rightarrow B=\dfrac{4^{2000}-1}{3}\)
Khi đó ta có:
\(A=75.B=75.\dfrac{4^{2000}-1}{3}=\dfrac{75.\left(4^{2000}-1\right)}{3}=\dfrac{75}{3}.\left(4^{2000}-1\right)=25.\left(4^{2000}-1\right)=25.4^{2000}-25\)
Ta có: \(4^{2000}-1=\left(4^4\right)^{500}-1=\left(...6\right)-1=...5\)
\(\Rightarrow25.4^{2000}-25=25.\left(...5\right)-25=\left(...5\right)-25=...0⋮100\left(đpcm\right)\)
Ta có:
\(A=75.\left(4^{1999}+4^{1998}+...+4^2+4+1\right)+25\)
\(A=25.3.\left(4^{1999}+4^{1998}+...+4^2+4+1\right)+25\) \(A=25.\left(4-1\right).\left(4^{1999}+4^{1998}+...+4^2+4+1\right)+25\)
\(A=25.\left(4^{2000}+4^{1999}+...+4^3+4^2+4-4^{1999}-4^{1998}-...-4^2-4-1\right)+25\)\(A=25.\left(4^{2000}-1\right)+25\)
\(A=25.\left(4^{2000}-1+1\right)\)
\(A=25.4^{2000}=25.4.4^{1999}=100.4^{1999}\)Vây:A là số chia hết cho 100
\(A=75\left(4^{2004}+...+4+1\right)+25\)
\(=25\left(4-1\right)\left(4^{2004}+...+4+1\right)+25\)
\(=25\left[4\left(4^{2004}+...+4+1\right)-\left(4^{2004}+...+4+1\right)\right]+25\)
\(=25\left[\left(4+4^2+...+4^{2005}\right)-\left(1+4+...+4^{2004}\right)\right]+25\)
\(=25\left(4^{2005}-1\right)+25\)
\(=25.4^{2005}-25+25\)
\(=100.4^{2004}⋮100\)
dat A=75*(4^2004+4^2003+...+4^2+4+1)+25
B=4^2004+4^2003+...+4^2+4+1
4B=4+4^2+4^3+...+4^2005
3B=4^2005-1
B=(4^2005-1)/3
A=75*(4^2005-1)/3+25
A=25*(4^2005-1)+25
A=25*4*4^2004-25+25
A=100*4^2004
Vay A chia het cho 100
k cho minh nhieu nha