Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A\left(x\right)=\left(x-1\right)\left(x^2+x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)
\(=x^3-1-\left(x^3+1\right)=x^3+1-x^3-1=0\)
Vậy biểu thức A không phụ thuộc vào biến
\(A\left(x\right)=\left(x-1\right)\left(x^2+x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)
\(A\left(x\right)=x^3+x^2+x-x^2-x-1-\left(x^3-x^2+x+x^2-x+1\right)\)
\(A\left(x\right)=x^3+x^2+x-x^2-x-1-x^3+x^2-x-x^2+x-1\)
\(A\left(x\right)=-2\)
Vậy biểu thức trên không phụ thuộc vào biến.
Câu còn lại bạn tự làm nhé tương tự như câu trên thôi !
`3xy(4x-2y)-(x-2y)^3-2(4y^3-1)`
`=12x^2y-6xy^2-(x^3-6x^2y+12xy^2-8y^3)-8y^3+2`
`=12x^2y-6xy^2-x^3+6x^2y-12xy^2+8y^3-8y^3+2`
`=-x^3+18x^2y-18xy^2+2` (??????)
a) 4x (1,5x - 2) - 3x (2x - 3) - x + 5
= 6x2 - 8x - 6x2 + 9x - x + 5
= 5
b) (2x - 3) (4x + 1) - 4 (x - 1) (2x - 1) - 2x + 5
= 8x2 + 2x - 12x - 3 - 4 (2x2 - x - 2x + 1) - 2x + 5
= 8x2 - 12x + 2 - 8x2 + 4x + 8x - 4
= -2
c) Ở đây mình không biết bạn viết như thế nào (\(x-\frac{1}{2}\)hay\(\frac{x-1}{2}\)) nhưng mình nghĩ chắc là \(x-\frac{1}{2}\). Thôi mình thử cả hai cho chắc
C1: (x - 3) (x + 2) + (x - 1) (x + 1) - [x - 1 / 2][x - 1 / 2] - x2
= x2 + 2x - 3x - 6 + (x2 - 1) - [x - 1 / 2]2 - x2
= - x - 6 + x2 - 1 - (x2 - x + 1/4)
= x2 - x - 7 - x2 + x - 1/4
= - 29/4
Thôi cách này đúng rồi mình không làm cách kia nha
Câu d) mình chưa hiểu (xn + 1 hay xn+1) nên mình không làm câu này
Chứng minh biểu thức sau không phụ thuộc vào biến x
A=(2x-3)(4x+1)-4(x-1)(2x-1)-2x+5
giúp nhanh nhé mn
\(A=\left(2x-3\right)\left(4x+1\right)-4\left(x-1\right)\left(2x-1\right)-2x+5\)
\(=\left(8x^2+2x-12x-3\right)-4\left(2x^2-x-2x+1\right)-2x+5\)
\(=8x^2-10x-3-8x^2+4x+8x-4-2x+5\)
\(=8x^2-8x^2-10x+4x+8x-2x-3-4+5\)
\(=-2\)
Vậy biểu thức A không phụ thuộc vào biến x
\(A=\left(2x-3\right)\left(4x+1\right)-4\left(x-1\right)\left(2x-1\right)-2x+5\)
\(\Leftrightarrow A=8x^2+2x-12x-3-4\left(2x^2-3x+1\right)-2x+5\)
\(\Leftrightarrow A=8x^2-10x-3-8x^2+12x-4-2x+5\)
\(\Leftrightarrow A=-2\)(đpcm)
Đề có sai không em ơi !