Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, s1 có 2015 hạng tử
=> s1= (2014:2).-1+2015=1007.(-1)+2015=1008
Lời giải:
a,S1=1+(-2)+3+(-4)+...+(-2014)+2015
=(1-2)+(3-4)+...+(2013-2014)+2015
=-1+(-1)+...+(-1)+2015
=-1.1007+2015
=(-1007)+2015
=1008
b,S2=(-2)+4+(-6)+8+...+(-2014)+2016
=(-2+4)+(-6+8)+...+(-2014+2016)
=2+2+...+2
=2.504
=1008
c,S3=1+(-3)+5+(-7)+...+2013+(-2015)
=(1-3)+(5-7)+...+(2013-2015)
=(-2)+(-2)+...+(-2)
=(-2).504
=-1008
d,S4=(-2015)+(-2014)+(-2013)+...+2015+2016
=(-2015+2015)+...+0+2016
=0+...+0+2016
=2016
STUDY WELL !
Ta có: \(\frac{3}{1^2.2^2}=\frac{3}{1.4}=1-\frac{1}{4}\); \(\frac{5}{2^2.3^2}=\frac{5}{4.9}=\frac{1}{4}-\frac{1}{9}\); \(\frac{7}{3^2.4^2}=\frac{7}{9.16}=\frac{1}{9}-\frac{1}{16}\); ...; \(\frac{39}{19^2.20^2}=\frac{39}{361.400}=\frac{1}{361}-\frac{1}{400}\)
Gọi tổng đó là A => A=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{361}-\frac{1}{400}\)
=> \(A=1-\frac{1}{400}=\frac{399}{400}< \frac{400}{400}=1\)
=> A < 1
\(\frac{1}{2}\) + \(\frac{1}{6}\) + \(\frac{1}{12}\) + ............ + \(\frac{1}{90}\) + \(\frac{1}{110}\)
= \(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + \(\frac{1}{3.4}\) + ............ + \(\frac{1}{9.10}\) + \(\frac{1}{10.11}\)
= 1 - \(\frac{1}{2}\) + \(\frac{1}{2}\) - \(\frac{1}{3}\) + \(\frac{1}{3}\) - \(\frac{1}{4}\) + ................. + \(\frac{1}{9}\) - \(\frac{1}{10}\) + \(\frac{1}{10}\) - \(\frac{1}{11}\)
= 1 - \(\frac{1}{11}\)
= \(\frac{10}{11}\)
ta có \(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}< \frac{1}{80}+\frac{1}{80}+..+\frac{1}{80}\)
ta có vế phải có 40 số , vế trái cũng có 40 số
VT=\(40\cdot\frac{1}{80}=\frac{40}{80}=\frac{1}{2}\)
do đó VT<1/2
gọi d=2a+1 và 6a+4
suy ra 2a+1 chia hết cho d; 6a+4 chia hết cho d
suy ra : (6a+4)-(2a+1) chia hết cho d
suy ra (6a+4)-3(2a+1) chia hết cho d
suy ra 1 chia hết cho d suy ra d=1
vậy 2a+1 và 6a+4 là hai số nguyên tố cùng nhau
đúng rồi đấy nhớ tick cho mình nhé!
Trả lời:
1, \(27^{20}-3^{56}=\left(3^3\right)^{20}-3^{56}\)
\(=3^{60}-3^{56}\)
\(=3^{55}.\left(3^5-3\right)\)
\(=3^{55}.\left(243-3\right)\)
\(=3^{55}\times240\)\(⋮240\)
Vậy \(27^{20}-3^{56}\)chia hết cho 240
2, Ta có: \(3a+7b⋮19\)
\(\Leftrightarrow2.\left(3a+7b\right)⋮19\)
\(\Leftrightarrow6a+14b⋮19\)
\(\Leftrightarrow6a+33b-19b⋮19\)
\(\Leftrightarrow3.\left(2a+11b\right)-19b⋮19\)
Do \(19b\)chia hết cho 19. Theo t/c chia hết của 1 hiệu thì \(3.\left(2a+11b\right)⋮19\Leftrightarrow2a+11b⋮19\)
Vậy \(2a+11b\)chia hết cho 19
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{79}{80}\)
\(A< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{80}{81}\)
\(A^2< \frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}...\frac{79}{80}.\frac{80}{81}\)
\(A^2< \frac{1}{81}=\left(\frac{1}{9}\right)^2\)
=> \(A< \frac{1}{9}\left(đpcm\right)\)
Ta có:
\(\frac{1}{2}\)= 1- \(\frac{1}{2}\) < 1- \(\frac{1}{3}\)=\(\frac{2}{3}\)
\(\frac{3}{4}\)= 1- \(\frac{1}{4}\) < 1- \(\frac{1}{5}\) = \(\frac{4}{5}\)
...
\(\frac{79}{80}\) = 1- \(\frac{1}{80}\) < 1- \(\frac{1}{81}\)= \(\frac{80}{81}\)
Từ trên, ta có:
A= \(\frac{1}{2}\). \(\frac{3}{4}\). \(\frac{5}{6}\)...\(\frac{79}{80}\)< \(\frac{2}{3}\). \(\frac{4}{5}\). \(\frac{6}{7}\)...\(\frac{80}{81}\)
A2 < \(\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{80}{81}\right)\). \(\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{79}{80}\right)\)
A2 < \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{79}{80}.\frac{80}{81}\)
A2 <\(\frac{1.\left(2.3.4...79.80\right)}{\left(2.3.4...79.80\right).81}\)
A2 < \(\frac{1}{81}\) =\(\left(\frac{1}{9}\right)^2\)
A < \(\frac{1}{9}\) (đpcm)
Vậy A< \(\frac{1}{9}\)