K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2017

\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)=\left(n^2+3n\right)^2-2\left(n^2+3n\right)=\left(n^2+3n-1\right)^2-1\)

là số liền trc của 1 số chính phương nên nó ko thể là số chính phương (đpcm)

9 tháng 4 2018

A = n n + 1 n + 2 n + 3

= n n + 3 n + 1 n + 2

= n 2 + 3n n 2 + 3n + 2

= n 2 + 3n 2 − 2 n 2 + 3n

= n 2 + 3n − 1 2 − 1 là số liền trc của 1 số chính phương nên nó ko thể là số chính phương (đpcm) 

29 tháng 3 2015

giải : Ta có :
an = n(n + 1) (n + 2) (n + 3) + 1

= (n2 + 3n) (n2 + 3n + 2) + 1

= (n2 + 3n)2 + 2(n2 + 3n) + 1

= (n2 + 3n + 1)2

Với n là số tự nhiên thì n2 + 3n + 1 cũng là số tự nhiên, theo định nghĩa, an là số chính phương.

29 tháng 3 2015

giải : Ta có :
an = n(n + 1) (n + 2) (n + 3) + 1

= (n2 + 3n) (n2 + 3n + 2) + 1

= (n2 + 3n)2 + 2(n2 + 3n) + 1

= (n2 + 3n + 1)2

Với n là số tự nhiên thì n2 + 3n + 1 cũng là số tự nhiên, theo định nghĩa, an là số chính phương.

28 tháng 1 2021

Ta có:

a= n(n+1)(n+2)(n+3) + 1

= (n2 + 3n)(n2 + 3n + 2) +1

= (n2 + 3n)2+ 2(n2 + 3n) + 1

= (n2 + 3n + 1)2

Với n là số tự nhiên thì (n2 + 3n + 1)cũng là số tự nhiên, vì vậy, an là số chính phương.

11 tháng 4 2019

a= [n(n+3][(n+1)(n+2)]+1

a=[n^2+3n][n^2+3n+2]+1

ĐẶt n^2+3n+1=b( b thuộc Z)

=> a=(b-1)(b+1)+1

=> a=b^2-1+1

=> a=b^2

=> a=(n^2+3n+1)^2

Mà n là số tự nhiên =>  n^2+3n+1 là số nguyên => a là số chính phương

T i ck nha

a=n(n+1)(n+2)(n+3)+1

=(n2+3n)(n2+3n+2)+1

Đặt n2+3n+1=m(m thuộc N*)

=>a= (m-1)(m+1)+1=m2

Vậy...................

28 tháng 1 2021

Ta có:

a= n(n+1)(n+2)(n+3) + 1

= (n2 + 3n)(n2 + 3n + 2) +1

= (n2 + 3n)2+ 2(n2 + 3n) + 1

= (n2 + 3n + 1)2

Với n là số tự nhiên thì (n2 + 3n + 1)cũng là số tự nhiên, vì vậy, an là số chính phương.