K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2016

a) Ta có:

\(\left(x-1\right)\left(x^2+x+1\right)=x\left(x^2+x+1\right)-\left(x^2+x+1\right)=x^3+x^2+x-x^2-x-1=x^3-1\) (đpcm)

b) Ta có:

\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x\left(x^3+x^2y+xy^2+y^3\right)-y\left(x^3+x^2y+xy^2+y^3\right)=x^4+x^3y+x^2y^2+xy^3-x^3y+x^2y^2+xy^3+y^4=x^4+y^4\)

 

3 tháng 6 2017

a.

\(\left(x-1\right)\left(x^2+x+1\right)=x^3-1\)

ta có

\(\left(x-1\right)\left(x^2+x+1\right)=x^3+x^2+x-x^2-x-1\)

\(=x^3-1\)

=>ĐPCM

b.

ta có

\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)

\(=x^4-y^4\)

=>ĐPCM

9 tháng 6 2017

a, (x-1) (x2 +x+1)

= x3+x2+x-x2-x-1

= x3-1 (đfcm)

b, (x3+x2y+xy2+y3) (x-y)

=x4+x3y+x2y2+xy3-x3y-x2y2-xy3-y4

= x4-y4 (đfcm)

12 tháng 7 2015

a) Ta có, vế trái = (x-1)(x2+x+1)= (x-1)(x2+x.1+12)=x3-1=vế phải

 

                       

9 tháng 7 2017

Thao Nguyen VT= Vế trái

VP= Vế phải

9 tháng 7 2017

2. CMR:

a. \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)

Ta có: VT=\(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5=x^5-y^5=VP\)=> đpcm.

b. \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5+y^5\)

Ta có: VT=\(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5=x^5+y^5=VP\)

=> đpcm.

c. \(\left(x+a\right)\left(x+b\right)=x^2+\left(a+b\right)x+ab\)

\(\Leftrightarrow x^2+bx+ax+ab=x^2+ax+bx+ab\) (đúng)

=> đpcm.

4 tháng 6 2023

\(VT=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\\ =x^4-x^3y+x^3y-x^2y^2+x^2y^2-y^4\\ =\left(x^4-y^4\right)+\left(-x^3y+x^3y\right)+\left(-x^2y^2+x^2y^2\right)\\ =x^4-y^4=VP\)

4 tháng 6 2023

\(VT=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)

\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)

\(=x^4+\left(x^3y-x^3y\right)+\left(x^2y^2-x^2y^2\right)+\left(xy^3-xy^3\right)-y^4\)

\(=x^4+0+0+0-y^4\)

\(=x^4-y^4=VP\left(dpcm\right)\)

31 tháng 7 2020

a. \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)

\(\Rightarrow x^5+x^4y+x^3y^2+x^2y^3+y^5-yx^4-x^3y^2-x^2y^3-xy^4-y^5=VP\)

\(\Rightarrow dpcm\)

b. \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(\Rightarrow x^5-x^4y+x^3y^2-x^2y^3+xy^4+yx^4-x^3y^2-xy^4+y^5=VP\)

\(\Rightarrow dpcm\)

c.d làm tương tự

31 tháng 7 2020

Bài làm

a) Biến đổi vế trái, ta được:

\(VT=\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)

\(=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5\)

\(=\left(x^5-y^5\right)+\left(x^4y-x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(x^2y^3-x^2y^3\right)+\left(xy^4-xy^4\right)\)

\(=x^5-y^5=VP\left(đpcm\right)\)

b) Biến đổi vế trái, ta có:

\(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)

\(=\left(x^5+y^5\right)+\left(-x^4y+x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(-x^2y^3+x^2y^3\right)+\left(xy^4-xy^4\right)\)

\(=x^5+y^5=VP\left(đpcm\right)\)

c) Biến đổi vế trái, ta có: 

\(VT=\left(a+b\right)\left(a^3-a^2b+ab^2-b^3\right)\)

\(=a^4-a^3b+a^2b^2-ab^3+a^3b-a^2b^2+ab^3-b^4\)

\(=\left(a^4-b^4\right)+\left(-a^3b+a^3b\right)+\left(a^2b^2-a^2b^2\right)+\left(-ab^3+ab^3\right)\)

\(=a^4-b^4=VP\left(đpcm\right)\)

d) Đây là hằng đẳng thức, như vế phải hình như bạn viết bị sai, mik sửa là vế phải nha.

\(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\)

Biến đổi vế trái, ta có:

\(VT=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=a^3-a^2b+ab^2+a^2b-ab^2+b^3\)

\(=\left(a^3+b^3\right)+\left(-a^2b+a^2b\right)+\left(ab^2-ab^2\right)\)

\(=a^3+b^3=VP\left(đpcm\right)\)

31 tháng 7 2019

\(1,\left(x+2y-3\right)^2-4\left(x+2y-3\right)+4=\left(x+2y-3-2\right)^2=\left(x+2y-5\right)^2\)

\(2,\left(x-y\right)^3-1-3\left(x-y\right)\left(x-y-1\right)=\left(x-y-1\right)\text{[}\left(x-y\right)^2+x-y+1\text{]}-3\left(x-y\right)\left(x-y-1\right)=\left(x-y-1\right)\left(x^2+y^2+x-y+1-3x+3y\right)=\left(x-y-1\right)\left(x^2+y^2-2x+2y+1\right)\)

\(3,\left(x^2+y^2-17\right)^2-4\left(xy-4\right)^2=\left(x^2+y^2-17\right)-\left(2xy-8\right)^2=\left(x^2-2xy+y^2-9\right)\left(x^2+y^2+2xy-25\right)=\text{[}\left(x-y\right)^2-3^2\text{]}\text{[}\left(x+y\right)^2-5^2\text{]}=\left(x-y+3\right)\left(x-y-3\right)\left(x+y+5\right)\left(x+y-5\right)\)