Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều cần chứng minh:
|a|+|b|≥|a+b||a|+|b|≥|a+b|
|a+b|=|a+b||a+b|=|a+b|
Khi này ,a và b có thể nhận với giá trị âm hoặc dương hoặc bằng 0
|a|>=0. và |b|>=0
Nên chúng chỉ có nhận giá trị lớn hơn or bằng 0
⇒|a|+|b|≥|a+b|→đpcm
\(\left\{{}\begin{matrix}\left|a\right|>=0\\\left|b\right|>=0\end{matrix}\right.\)
Ta có : \(\frac{a}{b}+\frac{b}{a}-2\)
\(=\frac{a^2}{ab}+\frac{b^2}{ab}-\frac{2ab}{ab}\)
\(=\frac{a^2+b^2-2ab}{ab}\)
\(=\frac{a^2-ab-ab+b^2}{ab}\)
\(=\frac{\left(a^2-ab\right)-\left(ab-b^2\right)}{ab}\)
\(=\frac{a\left(a-b\right)-b\left(a-b\right)}{ab}\)
\(=\frac{\left(a-b\right)\left(a-b\right)}{ab}\)
\(=\frac{\left(a-b\right)^2}{ab}\ge0\) với mọi \(a;b\inℕ^∗\)
\(\Rightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\) với mọi \(a;b\inℕ^∗\)
\(\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\) với mọi \(a;b\inℕ^∗\)
Ta có\(\frac{a}{b}+\frac{b}{a}-2\)
\(=\frac{a^2}{ab}+\frac{b^2}{ab}-\frac{2ab}{ab}\)
\(=\frac{a^2+b^2-2ab}{ab}\)
\(=\frac{\left(a^2-ab\right)-\left(ab-b^2\right)}{ab}\)
\(=\frac{a\left(a-b\right)-b\left(a-b\right)}{ab}\)
\(=\frac{\left(a-b\right)\left(a-b\right)}{ab}\)
\(=\frac{\left(a-b\right)^2}{ab}\ge0\text{ với mọi a;b \inℕ^∗}\)
\(\Rightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\text{ với mọi a;b\inℕ^∗}\)
\(\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\text{ với mọi a;b \inℕ^∗}\)
Học tốt
Ta có:Xét hiệu \(\frac{a}{b}+\frac{b}{a}-2\)
\(\Rightarrow\frac{a}{b}+\frac{b}{a}-2=\frac{a^2-2ab+b^2}{ab}=\frac{\left(a-b\right)^2}{ab}\ge0\)(Vì\(a,b\inℕ^∗\))
\(\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\)(Đấu "=" xảy ra khi và chỉ khi a=b)(đpcm)
giả sử a\(\ge\)b không làm mất đi tính chất tổng quát của bài.
\(\Rightarrow\)a = m + b [ m \(\ge\)0]
ta có :
\(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}\)\(\frac{b}{b+m}=1+\frac{m+b}{b+m}\)\(=1+1=2\)
\(vậy\)\(\frac{a}{b}+\frac{b}{a}\ge2(ĐPCM)\)
Cho a, b > 0. CMR: 1/a + 1/b ≥ 4/(a + b) (✽)
Cách 1: Biến đổi tương đương
(✽) ⇔ (a + b)/ab ≥ 4/(a + b) , do a,b > 0 --> ab > 0 và a + b > 0, quy đồng 2 vế
⇔ (a + b)² ≥ 4ab
⇔ a² + 2ab + b² ≥ 4ab
⇔ a² - 2ab + b² ≥ 0
⇔ (a - b)² ≥ 0 luôn đúng ∀ a,b > 0
--> đpcm
Dấu " = " xảy ra ⇔ a = b
P/s: Em ko chắc đâu nhé
\(\Rightarrow a,b\ge1\)
\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(=\frac{a}{a}+\frac{a}{b}+\frac{b}{b}+\frac{b}{a}\)
\(=1+\frac{a}{b}+1+\frac{b}{a}\)
\(=2+\frac{a}{b}+\frac{b}{a}\)
\(=2+\frac{a.a}{b.a}+\frac{b.b}{b.a}\)
\(=2+\frac{a^2+b^2}{b.a}\)
\(=\frac{2.a.b}{a.b}+\frac{a^2+b^2}{b.a}\)
\(=\frac{2.a.b+a^2+b^2}{a.b}\)
\(=2+a^2+b^2\)
Nếu :\(a=1;b=1\)
\(\Rightarrow2+a^2+b^2\ge4\left(đpcm\right)\)
\(a^2+b^2\ge2ab\)
- c1: xài AM-GM \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)
Dấu "=" khi a=b
- C2: \(a^2+b^2-2ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\). Dấu "=" khi a=b
\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Bình phương 2 vế ta có:
\(\left(\left|a\right|+\left|b\right|\right)^2\ge\left(\left|a+b\right|\right)^2\)
\(\Rightarrow a^2+2\left|ab\right|+b^2\ge a^2+2ab+b^2\)
\(\Rightarrow\left|ab\right|\ge ab\) (luôn đúng)
Dấu = khi \(ab=0\)