Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong 4 số a,b,c,d sẽ có ít nhất 2 số có cùng số dư khi chia cho 3 nên tích đó sẽ chia hết cho 3.
Trong 4 số a,b,c,d
Nếu có 2 số có cùng số dư khi chia cho 4 thì tích đó chia hết cho 4
Nếu không có cùng số dư thì số dư của 4 số đó chia cho 4 lần lược sẽ là 0,1,2,3. Vậy trong 4 số này có 2 số chẵn, 2 số lẻ. Mà hiệu 2 số chẵn và lẻ đều là số chẵn nên tích đó phải có ít nhât 2 số chẵn hay tích đó chia hết cho 4
Vì 3 và 4 nguyên tố cùng nhau nên tích đã cho chia hết cho 12
\(\frac{a}{b}=\frac{c}{d}\)=\(\frac{a}{c}=\frac{b}{d}\)=>\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)(2)
=>\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)(3)
=>\(\frac{a+b}{c+d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)(4)
=>Từ (1),(2),(3),(4)=>\(\frac{a}{b}=\frac{a^2-b^2}{c^2-d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)(đpcm)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)
\(\Rightarrow ac-ad=ac-cd\)
\(\Rightarrow a\left(c-d\right)=c\left(a-d\right)\)
\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\left(đpcm\right)\)
bạn dùng phương pháp suy ngươc nha . mình thử bạn xem bạn có làm được ko.
mình suy từ kết quả lên đề bài cho nha
a, (a-b) + (c+d)
= a-b + c+d
= (a+c) - (b-d)
=> (a-b) + (c+d) = (a+c) - (b-d)
b, (a-b) - (a-d)
= a-b - a + d
= (a+d) - (b-d)
=> (a-b) - (a-d) = (a+d) - (b-d)
\(a)\) \(\left(a-b\right)+\left(c+d\right)\)
\(=\)\(a-b+c+d\)
\(=\)\(\left(a+c\right)+\left(-b+d\right)\)
\(=\)\(\left(a+c\right)-\left(b-d\right)\)
Vậy ...
\(b)\) \(\left(a-b\right)-\left(c-d\right)\)
\(=\)\(a-b-c+d\)
\(=\)\(\left(a+d\right)+\left(-b-c\right)\)
\(=\)\(\left(a+d\right)-\left(b+c\right)\)
Vậy ...
a) ( a - b ) + ( c - d ) = a - b + c - d = a + c - b - d = ( a+ c) - ( b + d) ( đpcm)
b, c theo mik ko thể bằng 0 đc đấu nha...bạn xem lại đề đi