Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
20124n+3-3
=20124n.20123-3
=.......6 . ........8 - 3
=.............5 chia hết cho 5
1)a) 7^6 +7^5-7^4 = 7^4.7^2+7^4.7-7^4.1 = 7^4.(7^2+7-1) = 7^4.(49+7-1) = 7^4.55
Vì 55 chia hết cho 55 nên 7^4.55 chia hết cho 55
Do đó 7^6 + 7^5 - 7^4 chia hết cho 55 (đpcm)
Vì quá nhiều nên mk làm sơ sơ thôi
a) 15 chia hết cho n+1
=> n+1 thuộc Ư(15)={-15;-14;...14;15}
=> n thuộc { -16;-15;...;13;14}
b) 3n+5 chia hết cho n+1
=> 3n+3+2=3(n+1)+2 chia hết cho n+1
Do 3(n+1) chia hết cho n+1 => 2 chia hết cho 1 ( đến đây làm tương tự câu a)
c) n+7 chia hết cho n+1
=> (n+1)+6 chia hết cho n+1
=> 6 chia hết cho n+1 ( cũng làm tương tự)
d) 4n+7 chia hêt cho n-2
=> (4n-8)+15 chia hết cho n-2
=> 4(n-2) + 15 chia hết cho n-2
=> n-2 thuộc Ư(15)={-15;-14;...;14;15}
=> n thuộc {-13;-14;...;16;17}
e) 5n+8 chia hết cho n-3
=> (5n-15)+23 chia hết cho n-3
=> 5(n-3)+23 chia hết cho n-3 ( đến đây thì giống câu trên nhé)
f) 6n+8 chia hết cho 3n+1
=> 2(3n+1)+6 chia hết cho 3n+1
=> 3n+1 thuộc Ư(6) ( đến đây bạn tự làm giống n~ câu trên nhé
a) Vì 15 chia hết cho n + 1
=> n + 1 thuộc ước của 15
n + 1 thuộc { 1 ; 3 ; 5 ; 15 }
=> n thuộc { 0 ; 2 ; 4 ; 14 }
Số nguyên tố chỉ chia hết cho 1 và chính nó
Vậy ta có 2TH:
TH1: n-2=1\Rightarrow n=3
Thay n=3 vào n2+n−1n2+n−1 ta có
32+3−1=1132+3−1=11(là số nguyên tố)
TH2: n2+n−1=1n2+n−1=1\Rightarrow n=1 và n=-2(loại)
Thay n=1 vào n-2 ta có:
1-2=-1(loại)
\Rightarrow n=3
Vì p là tích của 2 số là (n-2) và (n^2+n-1)
=> p là nguyên tố thì một trong 2 số trên phải bằng 1 (nếu cả hai tích số đều lớn hơn 1 => p là hợp số, trái với đầu bài)
Ta luôn có n^2+n-1 = n^2+1 +(n-2) > (n-2)
Vậy => n-2=1 => n=3 => p=11
a, n+ 8 chia hết cho n + 3
=> n+ 8 -( n+3) chia hết cho n+ 3
=> 5 chia hết cho n+3
=> n+3 thuộc ước của 5
......
đến đây cậu tự tìm n nhé
b, 2n - 5 chia hết cho n-3
=> 2n -5 - 2n + 6 chia hết cho n- 3 ( nhân n-3 với 2 )
=> 1 chia hết cho n- 3
=> n-3 thuộc ước của 1
....
c,d làm tương tự nhé
a) n+2 chia het n-1 b) 2n+7 chia het n+1
(n-1)+3 chia hết n-1 2(n+1)+5 chia hết n+1
Suy ra Suy ra
3 chia hết n-1 5 chia het n+1
n-1 thuộc Ư(3) n+1 thuộc Ư(5)
n-1 = 3 ; 1 n+1= 5 ; 1
n= 4 ; 2 n = 4 ; 0
vì 5^n có tận cùng là 25 mà trừ 1 là 24 chia hết cho 4
c) vì 10^n=10....0(n số 0)
ta có 10...0 (n số 0) trừ 1 = 999...9(n số 9)chia hết cho 9
d)vì 10^n = 10....0(n số 0)
mà 10...0(n số 0) cộng 8 =10...8(n-1 chữ số 0) mà 1+8 =9 chia hết cho 9
a)xét n là số lẻ thì n^2 là lẻ cộng với n+1 là chẵn mà lẻ cộng chẵn = lẻ mà chia hết cho 4 là số chẵn
xét n là chẵn thì n^2 là chẵn nhưng n+1 là lẻ mà lẻ cộng chẵn = lẻ
Ta thấy n ; n+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 => n.(n+1).(n+2) chia hết cho 2
Nếu n chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3
Nếu n chia 3 dư 1 => n+5 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3
Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3
Vậy n.(n+1).(n+5) chia hết cho 3
=> n.(n+1).(n+5) chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )
=> ĐPCM
k mk nha
vì n ( n + 1 ) ( n + 5 ) chia hết cho 6 => n ( n + 1 ) ( n + 5 ) chia hết cho 2 ; 3
+) ta thấy n ( n + 1 ) là tích của 2 số tự nhiên liên tiếp , mà trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn chia hết cho 2 => n ( n + 1 ) chia hết cho 2 => n ( n + 1 ) ( n + 5 ) chia hết cho 2
+) đem chia n cho 3 xảy ra 3 trường hợp về số dư : dư 0 ; dư 1 ; dư 2
- nếu n chia cho 3 dư 0 => n chia hết cho 3 = > n ( n + 1 ) ( n + 5 ) chia hết cho 3
- nếu n chia cho 3 dư 1 => n = 3k + 1 ( k e N* )
khi đó n + 5 = 3k + 1 + 5 = 3k + 6 = 3 ( k + 2 ) chia hết cho 3
=> n ( n + 1 ) ( n + 5 ) chia hết cho 3
- nếu n chia cho 3 dư 2 => n = 3k + 2 ( k e N* )
khi đó n + 1 = 3k + 2 + 1 = 3k + 3 = 3 ( k + 1 ) chia hết cho 3
=> n ( n + 1 ) ( n + 5 ) chia hết cho 3
=> n ( n + 1 ) ( n + 5 ) chia hết cho 2 ; 3
mà ƯCLN( 2 ; 3 ) = 1
=> n ( n + 1 ) ( n + 5 ) chia hết cho 2 . 3
=> n ( n + 1 ) ( n + 2 ) chia hết cho 6
chúc bạn học tốt
^^