Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+5b^2-4ab+2a-6b+3\)
\(=a^2-4ab+2a+5b^2-6b+3\)
\(=a^2-2a\left(2b-1\right)+5b^2-6b+3\)
\(=a^2-2.a.\frac{2b-1}{2}+\left(\frac{2b-1}{2}\right)^2+5b^2-6b-\left(\frac{2b-1}{2}\right)^2+3\)
\(=\left(a-\frac{2b-1}{2}\right)^2+5a^2-6b-\frac{\left(2b-1\right)^2}{4}+3\)
\(=\left(a-\frac{2b-1}{2}\right)^2+5a^2-6b-\frac{4b^2-4b+1}{4}+3\)
\(=\left(a-\frac{2b-1}{2}\right)^2+5a^2-6b-b^2+b-\frac{1}{4}+3\)
\(=\left(a-\frac{2b-1}{2}\right)^2+4b^2-5b+\frac{11}{4}\)
\(=\left(a-\frac{2b-1}{2}\right)^2+\left(2b\right)^2-2.2b.\frac{5}{4}+\frac{25}{16}+\frac{19}{16}\)
\(=\left(a-\frac{2b-1}{2}\right)^2+\left(2b-\frac{5}{4}\right)^2+\frac{19}{16}\)
Vì \(\left(a-\frac{2b-1}{2}\right)^2\ge0;\left(2b-\frac{5}{4}\right)^2\ge0=>\left(a-\frac{2b-1}{2}\right)^2+\left(2b-\frac{5}{4}\right)^2+\frac{19}{16}\ge\frac{19}{16}>0\) (với mọi a,b) (đpcm)
a4 + b4 + 2 \(\ge\) 4ab
\(\Leftrightarrow\) a4 + b4 + 2 - 4ab \(\ge\) 0
\(\Leftrightarrow\) a4 - 2a2 + 1 + b4 - 2b2 + 1 + 2a2 + 2b2 - 4ab \(\ge\) 0
\(\Leftrightarrow\) (a2 - 1)2 + (b2 - 1)2 + 2(a2 - 2ab + b2) \(\ge\) 0
\(\Leftrightarrow\) (a2 - 1)2 + (b2 - 1)2 + 2(a - b)2 \(\ge\) 0 (Với mọi giá trị a, b)
Vậy a4 + b4 + 2 \(\ge\) 4ab
Chúc bn học tốt!!
b
= (x2-7x+6)(x2-7x+12)+9
đặt x2-7x+9=a ta đc
(a-3)(a+3)+9=a2-32+9=a2 >= 0 với mọi x ( đpcm)
Chứng minh rằng các biểu thức sau luôn dương với mọi x
a) a4 + b2 + 2 - 4ab (>= 0)
b) (x-1)(x-3)(x-4)(x-6)+9 (>=0)
= (x2-7x+6)(x2-7x+12)+9
đặt x2-7x+9=a ta đc
(a-3)(a+3)+9=a2-32+9=a2 >= 0 với mọi x ( đpcm)
1. (a+b)^2 ≥ 4ab
<=> a2+2ab+b2≥ 4ab
<=> a2+2ab+b2-4ab≥ 0
<=> a2-2ab+b2≥ 0
<=> (a-b)^2 ≥ 0 ( luôn đúng )
2. a^2 + b^2 + c^2 ≥ ab + bc + ca
<=> 2a^2 + 2b^2 + 2c^2 ≥ 2ab + 2bc + 2ca
<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca ≥ 0
<=> (a^2- 2ab+b^2) + (b^2-2bc+c^2) + (c^2-2ca+a^2) ≥ 0
<=> (a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0 ( luôn đúng)
Bài 2:
\(a^4+b^4\ge a^3b+b^3a\)
\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)
Dấu " = " xảy ra khi a = b
tk nka !!!! mk cố giải mấy bài nữa !11
\(a^4+b^4+2\ge4ab\)
\(\Leftrightarrow a^4-2a^2b^2+b^4+2a^2b^2-4ab+2\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2+2\left(ab-1\right)^2\ge0^{\left(1\right)}\)
\(^{\left(1\right)}\) đúng vậy ta có đpcm
C1: a^4 + b^4 + 2 ≥ 4ab
<=> a^4 - 2a^2 + 1 + b^2 - 2b^2 + 1 + 2a^2 + 2b^2 + 4ab
<=> (a^2 - 1)^2 + (b^2 -1)^2 + 2( a^2 -2ab+ b^2)
<=> (a^2 -1)^2 + (b^2 -1)^2 + 2(a-b) >= 0 (với mọi a, b)
Vậy nên a^4 + b^4 + 2 ≥ 4ab (với mọi số nguyên a, b)
C2:Xét (a + b)^2 - 4ab
= a^2 + 2ab +b^2 - 4ab = a^2 - 2ab + b^2 = (a-b)^2 >= 0
=> (a+b)^2 >= 4ab
Mà ta có:
a^4 + b^4 + 2 - (a+b)^2
= a^4 + b^4 +2 -a^2 - b^2 - 2ab
=a^4 - 2a^2 + 1 + a^2 + b^4 - 2b^2 +1 + b^2 - 2ab
= (a^2 - 1)^2 + (b^2 - 1)^2 + (a-b)^2 >= 0
=> a^4 + b^4 +2 >= (a+b)^2
=> a^4 + b^4 +2 >= 4ab
bạn thấy cánh nào dễ hơn thì chọn nha
\(4a^2b^2+4ab+1=\left(2ab\right)^2+2.2ab.1+1^2=\left(2ab+1\right)^2\ge0\left(\forall a,b\right)\)