K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2017

Làm nhanh hộ mình với

31 tháng 8 2017

Tham khảo bài của chị tui nè:  

Hằng đẳng thức: a^n - b^n = (a-b)[a^(n-1).b + a(n-2).b² +..+ b^(n-1)] = (a-b).p 

* 5^2n - 2^n = 25^n - 2^n = (25-2)p = 23p => 5.5^2n - 5.2^n = 5.23.p 
=> 5^(2n+1) - 5.2^n = 5.23p chia hết cho 23 

* 2^(n+4) + 2^(n+1) = 2^n.2^4 + 2^n.2 = 2^n(2^4 + 2) = 18.2^n = 23.2^n - 5.2^n 

Vậy: 5^(2n+1) + 2^(n+4) + 2^(n+1) = 5^(2n+1) - 5.2^n + 23.2^n chia hết cho 23 

16 tháng 4 2016

**** m chia hết cho 3 => m^2 chia hết cho 3 ( m^2 = m.m ) 
Tt: n^2 chia hết cho 3 

=> m^2 + n^2 chia hết cho 3 

**** định lí đảo 
m^2 + n^2 chia hết cho 3 

Xét: a chia 3 có 3 trườg hợp số dư: 0;1;2 => a^2 có 2 trườg hợp số dư là 0;1 < cm: đặt a = 3k + x với x là các trườg hợp số dư. sau đó tìm được số dư khi bình phương a > 


=> m^2 và n^2 cũng có các khả năng số dư đó khi chia cho 3 

Xét các trườg hợp: 

m^2 và n^2 chia 3 cùng dư 1 => m^2 + n^2 chia 3 dư 2 => loại 
m^2 và n^2 1 số chia 3 dư 0 và 1 số chia 3 dư 1 => m^2 + n^2 chia 3 dư 1 => loại 

=> m^2 và n^2 cùng chia hết cho 3 

hay m và n cùng chia hết cho 3

5 tháng 2 2016

chia hết vì tất cả các STN chia hết cho 9 thì cũng chia hết cho 3

olm duyệt đi

5 tháng 2 2016

 **** m chia hết cho 3 => m^2 chia hết cho 3 ( m^2 = m.m ) 
Tt: n^2 chia hết cho 3 

=> m^2 + n^2 chia hết cho 3 

**** định lí đảo 
m^2 + n^2 chia hết cho 3 

Xét: a chia 3 có 3 trườg hợp số dư: 0;1;2 => a^2 có 2 trườg hợp số dư là 0;1

( cm: đặt a = 3k + x với x là các trườg hợp số dư. sau đó tìm được số dư khi bình phương a )


=> m^2 và n^2 cũng có các khả năng số dư đó khi chia cho 3 

Xét các trườg hợp: 

m^2 và n^2 chia 3 cùng dư 1 => m^2 + n^2 chia 3 dư 2 => loại 
m^2 và n^2 1 số chia 3 dư 0 và 1 số chia 3 dư 1 => m^2 + n^2 chia 3 dư 1 => loại 

=> m^2 và n^2 cùng chia hết cho 3 

hay m và n cùng chia hết cho 3

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

4 tháng 7 2021

Ta có m + 2014n \(⋮\)2015

<=> 2015m + 2015n - 2014m - n \(⋮\)2015

<=> 2015(m + n) - (2014m + n) \(⋮\)2015

Vì 2015(m + n) \(⋮\)2015

=> 2014m + n \(⋮\)2015 (1)

mà m + 2014n \(⋮\)2015 (2)

Từ (1) và (2) => (2014m + n)(m + 2014n) \(⋮\)20152

1 tháng 6 2018

- Vì n là số tự nhiên lẻ

=> 24n có tận cùng là 24

=> 24n + 1 có tận cùng là 24 + 1 = 25 

Vì số chia hết cho 25 là số có chữ số tận cùng là 25 => 24n + 1 chia hết cho 25 (1)

- Vì 24 : 23 = 1 (dư 1)

=> 24n : 23 cũng sẽ dư 1

=> 24n + 1 : 23 sẽ có dư là 2

=> 24n + 1 sẽ không chia hết cho 23  (2)

Từ (1) và (2) suy ra: 24n + 1 chia hết cho 25 nhưng ko chia hết cho 23 với n là số tự nhiên lẻ