Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 10\(^9\)+10\(^8\)+10\(^7\)
= 10\(^7\). (100 + 10 + 1)
= 10\(^6\) . 2 . 555 chia hết cho 555
b) Ta thấy: 16\(^5\)= 2\(^{20}\)
=> A = 16\(^5\) + 2\(^{15}\) = 2\(^{20}\)+ 2\(^{15}\)
= 2\(^{15}\).2\(^5\)+ 2\(^{15}\)
= 2\(^{15}\). (2\(^5\)+1)
= 2\(^{15}\).33
số này luôn chia hết cho 33
b) \(16^5+2^{15}⋮33\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}.\left(1+2^5\right)\)
\(=2^{15}.33⋮33\)
a)2^10+2^11+2^12
=2^10+2^10.2+2^10.2^2
=2^10.(1+2+2^2)
=2^10.7 chia hết cho 7
2^10+2^11+2^12
=2^10+2^10.2+2^10.2^2
=2^10.(1+2+2^2)
=2^10.7 chia hết cho 7
a) \(\left(1+2+2^2+...+2^7\right)\)
\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^6+2^7\right)\)
\(=\left(1+2\right)+2^2.\left(1+2\right)+...+2^6.\left(1+2\right)\)
\(=3+2^2.3+...+2^6.3\)
\(=3.\left(1+2^2+...+2^6\right)⋮3\left(đpcm\right)\)
a) Đặt A = 1 + 2 + 22 + 23 + ... + 27
Ta có:
A = 1 + 2 + 22 + 23 + ... + 27
\(\Rightarrow\)2A = 2 + 22 + 23 + 24 + ... + 28
\(\Rightarrow\)A = 28 - 1 = 255
Vì 255\(⋮\)3\(\Rightarrow\)2 + 22 + 23 + 24 + ... + 28\(⋮\)3
\(\Rightarrow\)ĐPCM
\(P=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^{10}\)
\(P=2\left[\left(1+2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8+2^9\right)\right]\)
\(P=2\left[\left(1+2+2^2+2^3+2^4\right)+2^5\left(1+2+2^2+2^3+2^4\right)\right]\)
\(P=2\left(2^5+1\right)\left(1+2+2^2+2^3+2^4\right)\)
Mà: \(1+2+2^2+2^3+2^4=31\Rightarrow P⋮31\left(đpcm\right)\)
a) \(5^{15}+5^{14}+5^{13}\)
\(=5^{12}\left(5^3+5^2+5\right)\)
=\(5^{12}\left(125+25+5\right)\)
=\(5^{12}\times155=5^{12}\times5\times31\)chia hết cho 31
b)\(7^6+7^5+7^4\)ko chia hết cho 8 (bấm máy tính là ra)
c)\(2^{10}+2^9+2^8+2^7\)
\(=2^7\left(2^3+2^2+2+2^0\right)\)
\(=2^7\left(8+4+2+1\right)\)
\(=2^7\times15\) chia hết cho 15
+) C=5+52+53+54+....+52010
<=> C=(5+52)+(53+54)+.....+(52009+52010)
<=> C=5(1+5)+53(1+5)+....+52009(1+5)
<=> C=5 x 6 +53 x 6+....+52009 x 6
<=> C=6(5+53+....+52009)
=> C chia hết cho 6 (đpcm)
+) C=5+52+53+54+....+52010
<=> C=(5+52+53)+(54+55+56)+....+(52008+52009+52010)
<=> C=5(1+5+25)+54(1+5+25)+....+52008(1+5+25)
<=> C=5 x 31+54x31 +....+52008 x 31
<=> C=31(5+54+....+52008)
=> C chia hết cho 31 (đpcm)
+) D=7+72+73+74+....+72010
<=> D=(7+72)+(73+74)+....+(72009+72010)
<=> D=7(1+7)+73(1+7)+....+72009(1+7)
<=> D=7 x 8 +73 x 8 +....+72009 x 8
<=> D=8(7+73+....+72009)
+) D=7+72+73+74+....+72010
<=> D=(7+72+73)+(74+75+76)+....+(72008+72009+72010)
<=> D=7(1+7+49)+74(1+7+49)+....+72008(1+7+49)
<=> D=7 x 57 +74 x 57+....+72008 x 57
<=> D=57(7+74+...+72008)
=> D chia hết cho 57 (đpcm)