K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2023

Vì:

khi tính bài toán 2015/2016 + 2016/2017 + 2017/2018 + 2018/2019 + 2019/2020 + 2020/2015 này ra thì ta được con số là 6,000003688 con số này phải lớn hơn số 6 nên:  6,000003688 > 6

25 tháng 4 2023

Vì:khi tính bài toán 2015/2016+2016/2017+2017/2018+2018/2019+ 2019/2020+2020/2015 ta ra được là: 6,000003688 nên: 6,000003688 > 6

30 tháng 8 2020

Ta thấy:

2020-2019=1

2018-2017=1

2016-2015=1

...

3-2=1

Vậy:

2020-2019+2018-2017+2016-2015+...+3-2+1

=1+1+1+...+1

=2018+1=2019

Vậy: kết quả bài toán là 2019

22 tháng 9 2020

hóc búa thật đấy :3

22 tháng 9 2020

2020 - 2019 + 2018 - 2017 + 2016 - 2015 + ... - 3 + 2 - 1

= 1 + 1 + 1 + ... + 1

Vì có 2020 số,mỗi đôi chẵn lẻ trừ đi bằng 1 rồi cộng lại.

Tổng cộng 1010 đôi = 1010 số 1

= 1 x 1010

= 1010

11 tháng 1 2020

\(A=2^{2015}+2^{2016}+2^{2017}+2^{2018}+2^{2019}+2^{2020}.\)

\(=2^{2014}\left(2+2^2+2^3+2^4+2^5+2^6\right)\)

\(=126.2^{2014}\)

\(=42.3.2^{2014}⋮42\)

22 tháng 12 2019

giả sử 2015^2016+2016^2017+2017^2018+2018^2019 là số chính phương

mà 2015^2016+2016^2017+2017^2018+2018^2019 là số chẵn=>2015^2016+2016^2017+2017^2018+2018^2019chia hết cho 4

ta có 2015^2016 ≡ (-1)^2016 (mod 4);   2016^2017 chia hết cho 4;   2017^2018 ≡ 1^2018 (mod 4);   2018^2019 ≡ 2^2019

=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ (-1)^2016+1^2018+2^2019 (mod 4)

<=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ 1+1+2^2019(mod 4)

ta có 2^2019=4x2^2017 chia hết cho 4

=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ 2 (mod 4) vô lí 

=> điều giả sử sai

=>ĐPCM

9 tháng 12 2019

Ta có : S=22020+22019+22018+22017+22016+22015+22014+22013

              =22013(27+26+25+24+23+22+2+1)

             =22013.255

Vì 255\(⋮\)15 nên 22013.255\(⋮\)15

hay S\(⋮\)15

Vậy S\(⋮\)15.