Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy:
2020-2019=1
2018-2017=1
2016-2015=1
...
3-2=1
Vậy:
2020-2019+2018-2017+2016-2015+...+3-2+1
=1+1+1+...+1
=2018+1=2019
Vậy: kết quả bài toán là 2019
\(A=2^{2015}+2^{2016}+2^{2017}+2^{2018}+2^{2019}+2^{2020}.\)
\(=2^{2014}\left(2+2^2+2^3+2^4+2^5+2^6\right)\)
\(=126.2^{2014}\)
\(=42.3.2^{2014}⋮42\)
giả sử 2015^2016+2016^2017+2017^2018+2018^2019 là số chính phương
mà 2015^2016+2016^2017+2017^2018+2018^2019 là số chẵn=>2015^2016+2016^2017+2017^2018+2018^2019chia hết cho 4
ta có 2015^2016 ≡ (-1)^2016 (mod 4); 2016^2017 chia hết cho 4; 2017^2018 ≡ 1^2018 (mod 4); 2018^2019 ≡ 2^2019
=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ (-1)^2016+1^2018+2^2019 (mod 4)
<=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ 1+1+2^2019(mod 4)
ta có 2^2019=4x2^2017 chia hết cho 4
=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ 2 (mod 4) vô lí
=> điều giả sử sai
=>ĐPCM
Vì:
khi tính bài toán 2015/2016 + 2016/2017 + 2017/2018 + 2018/2019 + 2019/2020 + 2020/2015 này ra thì ta được con số là 6,000003688 con số này phải lớn hơn số 6 nên: 6,000003688 > 6
Vì:khi tính bài toán 2015/2016+2016/2017+2017/2018+2018/2019+ 2019/2020+2020/2015 ta ra được là: 6,000003688 nên: 6,000003688 > 6