Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Muốn chia hết cho 10 thì tận cùng phải bằng 0
Ta có
5+4-1=0
=> 175+244-1321 chia hết cho 10
a: \(B=3+3^2+3^3+...+3^{120}\)
\(=3\left(1+3+3^2+...+3^{119}\right)⋮3\)
b: \(B=3+3^2+3^3+3^4+...+3^{2020}\)
\(=3\left(1+3\right)+...+3^{2019}\left(1+3\right)\)
\(=4\cdot\left(3+...+3^{2019}\right)⋮4\)
Bài 1
\(2^{1995}=2^5\times2^{1990}=32\times2^{1990}\)
Mà \(32\div31\)dư \(1\)nên\(\left(32\times2^{1990}\right)\div31\)dư \(1\)
\(\Rightarrow\left(32\times2^{1900}-1\right)⋮31\)
hay
\(\left(2^{1995}-1\right)⋮31\)
Bài 2
Làm tương tự
Theo bài ra , ta có 3 trg hợp n :
TH1 : n chia hết cho 3 .
Nếu n chia hết cho 3 thì tích trên đã đc chia hết cho 3 .
TH2 : n chia 3 dư 1
Nếu n chia 3 dư 1 thì (n + 2 ) sẽ chia hết cho 3 => tích n(n+2)(n+7) chia hết cho 3 , vì nếu trong tích có một thừa số chia hết cho 3 thì cả tích sẽ chia hết cho 3 .
TH3 : n chia 3 dư 2
Nếu n chia 3 dư 2 thì (n+7) sẽ chia hết cho 3 => tích n(n+2)(n+7) chia hết cho 3 , vì nếu trong tích có một thừa số chia hết cho 3 thì cả tích sẽ chia hết cho 3 .
Vậy : Với mọi trg hợp n thì tích n(n+2)(n+7) đều chia hết cho 3 .
ta có: n(n+2)(n+7) \(⋮\)3.
đặt A = n(n+2)(n+7)
vì n là số tự nhiên. khi chia n cho 3 ta có 3 dạng:n=3k; n=3k+1; n=3k+2 ( k\(\in\) N )
nếu n=3k => n \(⋮\)3
=> A \(⋮\)3. (1)
nếu n=3k+1 => n+2=3k+1+2
=3k+3 \(⋮\)3
=> A \(⋮\)3 (2)
nếu n=3k+2 => n+7=3k+2+7
=3k+9 \(⋮\)3
=> A \(⋮\)3 (3)
từ (1);(2) và (3) => A \(⋮\)3 với mọi n .
vậy n(n+2)(n+7) \(⋮\)3.với mọi n .
chcs năm mới vui vẻ, k nha...
Ta có : 111...1(n chữ số 1) =10^(n-1)+10^(n-2) +...+10+1
Mà 10^(n-1) : 9 dư 1 ; 10^(n-2) : 9 dư 1 ; ... 1: 9 dư 1
Vậy 111...11(n chữ số 1) : 9 dư n
n : 9 dư n
Nên 111...11 ( n chữ số 1) - n chia hết cho 9 với mọi STN n .
b)2625 có chữ số tận cùng là 5;175 cũng có chữ số tận cùng là 5 suy ra 2625 chia hết cho 175
\(a,S=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{19}+3^{20}\right)\\ S=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{18}\left(3+3^2\right)\\ S=\left(3+3^2\right)\left(1+3^2+...+3^{18}\right)=12\left(1+3^2+...+3^{18}\right)⋮12\)
\(b,S=\left(3+3^2+3^3+3^4\right)+...+\left(3^{17}+3^{18}+3^{19}+3^{20}\right)\\ S=\left(3+3^2+3^3+3^4\right)+....+3^{16}\left(3+3^2+3^3+3^4\right)\\ S=\left(3+3^2+3^3+3^4\right)\left(1+...+3^{16}\right)\\ S=120\left(1+...+3^{16}\right)⋮120\)
\(a,S=3+3^2+3^3+...+3^{20}\)
Ta thấy:\(3+3^2=12⋮12\)
\(\Rightarrow S=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{18}\left(3+3^2\right)\\ \Rightarrow S=\left(3+3^2\right)\left(1+3^2+...+1^{18}\right)\\ \Rightarrow S=12.\left(1+3^2+...+3^{18}\right)⋮12\\ \left(đpcm\right)\)
\(b,Ta\) \(thấy:\)\(3+3^2+3^3+3^4=120⋮120\)
\(\Rightarrow S=\left(3+3^2+3^3+3^4\right)+...+\left(3^{17}+3^{18}+3^{19}+3^{20}\right)\\ \Rightarrow S=\left(3+3^2+3^3+3^4\right)+...+3^{16}\left(3+3^2+3^3+3^4\right)\\ \Rightarrow S=\left(3+3^2+3^3+3^4\right)\left(1+...+3^{16}\right)\\ \Rightarrow S=120\left(1+...+3^{16}\right)⋮120\\ \left(đpcm\right)\)
17^5 c/s tận cùng là 7(dùng 4k+1 gì gì đấy để ra c/s tận cùng)
24^4 c/s tận cùng là 6(4q)
13^21 tận cùng là 3(4p+1)
->bt có c/s tận cùng là 0 => chia hết cho 10