K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2019

Ta có \(n^2+\left(n+1\right)^2>2n\left(n+1\right)\)

=>\(\frac{1}{n^2+\left(n+1\right)^2}< \frac{1}{2}\left(\frac{1}{n\left(n+1\right)}\right)=\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)

Áp dụng ta có \(\frac{1}{5}=\frac{1}{1^2+2^2}< \frac{1}{2}\left(\frac{1}{1}-\frac{1}{2}\right)\)

                        \(\frac{1}{13}=\frac{1}{2^2+3^2}< \frac{1}{2}\left(\frac{1}{2}-\frac{1}{3}\right)\)

                         ..................................................................

                         \(\frac{1}{2019^2+2020^2}< \frac{1}{2}\left(\frac{1}{2019}-\frac{1}{2020}\right)\)

=> \(VT< \frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{2019}-\frac{1}{2020}\right)=\frac{1}{2}\left(1-\frac{1}{2020}\right)< \frac{1}{2}\)(ĐPCM)

                          

29 tháng 6 2019

Câu hỏi của bạn sao ko thấy quy luật dãy nhỉ ?

13 tháng 8 2019

bn có thể tham khảo ở sách vũ hữu binh nha

17 tháng 7 2019

1) Ta có: \(2020^2=\left(2019+1\right)^2=2019^2+2.2019+1.\)

\(\Rightarrow1+2019^2=2020^2-2.2019\)

\(\Rightarrow M=\sqrt{1+2019^2+\frac{2019^2}{2020^2}}+\frac{2019}{2020}=\sqrt{2020^2-2.2019+\frac{2019^2}{2020^2}}+\frac{2019}{2020}\)

\(=\sqrt{2020^2-2.2020.\frac{2019}{2020}+\left(\frac{2019}{2020}\right)^2}+\frac{2019}{2020}\)

\(=\sqrt{\left(2020-\frac{2019}{2020}\right)^2}+\frac{2019}{2020}=2020-\frac{2019}{2020}+\frac{2019}{2020}\)

\(=2020\)

Vậy M=2020.

2) Xét  : \(k\in N;k\ge2\)ta có:

\(\left(1+\frac{1}{k-1}-\frac{1}{k}\right)^2=1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+\frac{2}{k-1}-\frac{2}{\left(k-1\right)k}-\frac{2}{k}\)

                                          \(=1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+\frac{2}{k-1}-\frac{2}{k-1}+\frac{2}{k}-\frac{2}{k}\)

\(\Rightarrow\left(1+\frac{1}{k-1}-\frac{1}{k}\right)^2=1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}\)

\(\Rightarrow\sqrt{1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}}=1+\frac{1}{k-1}+\frac{1}{k}\)

Cho \(k=3,4,...,2020.\)Ta có:

\(N=\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2019^2}+\frac{1}{2020^2}}\)

\(=\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+...+\left(1+\frac{1}{2018}-\frac{1}{2019}\right)+\left(1+\frac{1}{2019}-\frac{1}{2020}\right)\)

\(=2018+\frac{1}{2}-\frac{1}{2020}=2018\frac{1009}{2020}\)

Vậy \(N=2018\frac{1009}{2020}.\)

AH
Akai Haruma
Giáo viên
14 tháng 8 2019

Lời giải:

Xét số hạng tổng quát:

\(\frac{1}{n\sqrt{n+1}+(n+1)\sqrt{n}}=\frac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{\sqrt{n(n+1)}(\sqrt{n}+\sqrt{n+1})}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}\)

\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Do đó:

\(A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2019}}-\frac{1}{\sqrt{2020}}\)

\(=1-\frac{1}{\sqrt{2020}}\)

NV
7 tháng 5 2020

\(22...2=\frac{2}{9}\left(99...9\right)=\frac{2}{9}\left(10^{2020}-1\right)\)

\(11...1=\frac{1}{9}\left(99...9\right)=\frac{1}{9}\left(10^{2019}-1\right)\)

Do đó:

\(A=\frac{1}{9}\left(10^{2019}-1\right).10^{2021}+\frac{2}{9}\left(10^{2020}-1\right).10+5\)

\(=\frac{1}{9}\left(10^{4040}-10^{2021}+2.10^{2021}-20+45\right)\)

\(=\frac{1}{9}\left(10^{4040}+10^{2021}+25\right)=\frac{1}{9}\left(2^{2020}+5\right)^2=\left(\frac{2^{2020}+5}{3}\right)^2\)

\(2^{2020}=4^{1010}\equiv1\left(mod3\right)\Rightarrow2^{2020}+5⋮3\)

\(\Rightarrow\frac{2^{2020}+5}{3}\in Z\Rightarrow A\) là số chính phương

7 tháng 5 2020

@Nguyễn Việt Lâm giúp em với

NM
10 tháng 1 2021

bài 1 ta có 

\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(2020a+2021b\right)\ge\left(\sqrt{2020}+\sqrt{2021}\right)^2\)  ( BDT Bunhia )

do đó

\(a+b=ab.\left(\frac{1}{a}+\frac{1}{b}\right)\ge\left(\frac{1}{a}+\frac{1}{b}\right)\left(2020a+2021b\right)\ge\left(\sqrt{2020}+\sqrt{2021}\right)^2\)

vậy ta có đpcm.

bài 2.

ta có \(VT=\sqrt{x-3}+\sqrt{5-x}\le2\)( BDT Bunhia )

\(VP=y^2+2.\sqrt{2019}y+2021=\left(y+\sqrt{2019}\right)^2+2\ge2\)

suy ra PT có nghiệm \(\hept{\begin{cases}x-3=5-x\\y+\sqrt{2019}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=-\sqrt{2019}\end{cases}}}\)