K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2017

n^3+11n
=n^3-n+12n
=(n-1)n(n+1)+12n
chia hết cho 6 với mọi n € Z

31 tháng 7 2017

Ta có \(n^3+11n\)=\(n^3-n+12n\)

\(=n(n^2-1)+12n\)

\(=(n-1)(n+1)n+12n\)

Vì n là số nguyên nên \((n-1)(n+1)n\) là tích của 3 số nguyên liên tiếp nên phải chia hết cho 6;mà 12 lại chia hết cho 6

\(\Rightarrow\)12n cũng chia hết cho 6.

\(\Rightarrow\)\((n-1)(n+1)n+12n\) chia hết cho 6

Vậy \(n^3+11n\) chia hết cho 6 (đpcm)

15 tháng 11 2016

giả sử: A= n^2 + 11n + 39 chia hết cho 49 => A chia hết cho 7 
mà : n^2 + 11n + 39 = (n+9)(n+2) +21 chia hết cho 7 
=> (n+9)(n+2) chia hết cho 7 
lại có: (n+9) - (n+2) = 7 nên (n+9) và (n+2) đồng thời chia hết cho 7 
=>(n+9)(n+2) chia hết cho 49 
mà: (n+9)(n+2) +21 chia hết cho 49 
=> 21 chia hết cho 49 vô lí => đpcm 

Bài 2: A=3^ (2*n) + 3^n + 1 
n không chia hết cho 3 nên ta xét 2 trường hợp: 
* n =3k +1: 
A = 3^ (6k + 3) + 3^(3k +1) +1= 9.27^2k +3.27^ +1 
= 9.(26+1)^2k + 3.(26 +1)^k +1 
= 9(2.13 +1)^2k + 3.(2.13 +1)^k +1 
A đồng dư với (9 +3 +1)= 13 theo đồng dư 0 theo (mod 13) 
vậy A chia hết cho 13. 
( Mình giải thích thêm nhé: 
(2.13 +1)^2k chia cho 13 dư 1 
=> 9(2.13 +1)^2k chia cho 13 dư 9 
(2.13 +1)^k chia 13 dư 1 
=> 3.(2.13 +1)^k chia 13 dư 1 
=> A chia 13 dư 9 + 3 +1 = 13 
A = 13.k +13 với k nguyên 
A/13 = k + 1 la số nguyên => A chia hết cho 13 
khi triển khai (x+1)^n = thì các hạng tử đều chứa x trừ hạng tử cuối = 1 nên (x+1)^n chia cho x dư 1.) 
* n = 3k +2: 
A = 3^(6k +4) + 3^(6k +2) +1=81.27^2k +9.27^k +1 
= 81.(2.13+1)^2k + 9(2.13 +1)^k +1 
A đồng dư với ( 81 + 9 +1) = 91 đồng dư 0 theo (mod 13) 
vậy A chia hết cho 13 

15 tháng 11 2016

ban oi mik lon bai rui

12 tháng 12 2016

đây là toán lớp mấy vậy

12 tháng 12 2016

Muốn vip à 

15 tháng 8 2018

Em tham khảo tại đây nhé:

Câu hỏi của VRCT_Ran love shinichi - Toán lớp 8 - Học toán với OnlineMath

11 tháng 12 2016

Bài này giải được 1 tháng VIP đấy, vì đây là câu hỏi của Toán vui hằng tuần

5 tháng 6 2016

a)Đặt \(E_n=n^3+3n^2+5n\)

  • Với n=1 thì E1=9 chia hết 3
  • Giả sử En đúng với \(n=k\ge1\) nghĩa là:

\(E_k=k^3+3k^2+5k\) chia hết 3 (giả thiết quy nạp)

  • Ta phải chứng minh Ek+1 chia hết 3,tức là:

Ek+1=(k+1)3+3(k+1)2+5(k+1) chia hết 3

Thật vậy:

Ek+1=(k+1)3+3(k+1)2+5(k+1)

       =k3+3k2+5k+3k2+9k+9=Ek+3(k2+3k+3)

Theo giả thiết quy nạp thì Ek chia hết 3

ngoài ra 3(k2+3k+3) chia hết 3 nên Ek chia hết 3

=>Ek chia hết 3 với mọi \(n\in N\)*

30 tháng 8 2019

c) n^3-n+12n

= n(n^2-1)+12n

n(n-1)(n+1)+12n

Ta thấy 3 số tự nhiên liên tiếp (n-1)n(n+1) ít nhất có 1 số chia hết cho 2, và ít nhất có 1 số chia hết cho 3, suy ra tích chia hết cho 6 mà 12n =6x2n chia hết cho 6 suy ra điều phải chứng minh