Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, C/m : a^3 + b^3 + c^3 ≥ a^2.căn (bc) + b^2.căn (ac) + c^2.căn (ab)
Ta có : 2( a^3 + b^3 + c^3 ) = ( a^3 + b^3 + c^3 ) + ( a^3 + b^3 + c^3 )
≥ 3abc + a^3 + b^3 + c^3 ( BĐT Côsi )
= a^3 + abc + b^3 + abc + c^3 + abc ≥ 2.a^2.căn (bc) + 2.b^2.căn (ac) + 2.c^2.căn (ab) ( BĐT Côsi )
=> a^3 + b^3 + c^3 ≥ a^2.căn (bc) + b^2.căn (ac) + c^2.căn (ab)
Dấu " = " xảy ra khi a = b = c.
2, C/m : (a^2 + b^2 + c^2)(1/(a + b ) + 1/(b + c) +1/(a + c) ) ≥ (3/2)(a + b + c) ( 1 )
Áp dụng BĐT Bunhiacốpxki cho phân số ( :D ) ta được :
(a^2 + b^2 + c^2)(1/(a + b ) + 1/(b + c) +1/(a + c) ) ≥ (a^2 + b^2 + c^2).[(1+1+1)^2/(a+b+b+c+a+c)] = (a^2 + b^2 + c^2) . 9/[2.(a+b+c)]
(1) <=> (a^2 + b^2 + c^2) . 9/[2.(a+b+c)] ≥ (3/2)(a + b + c)
<=> 3(a^2 + b^2 + c^2) ≥ (a + b + c)^2
<=> a^2 + b^2 + c^2 ≥ ab + bc + ca.
BĐT cuối đúng nên => đpcm !
Dấu " = " xảy ra khi a = b = c.
3, C/m : a^4 + b^4 + c^4 ≥ (a + b + c)abc
Ta có : 2( a^4 + b^4 + c^4 ) = (a^4 + b^4 +c^4) + (a^4 + b^4 +c^4)
≥ ( a^2.b^2 + b^2.c^2 + c^2.a^2 ) + (a^4 + b^4 +c^4) = ( a^4 + b^2.c^2 ) + ( b^4 + c^2.a^2 ) + ( c^4 + a^2.b^2 )
≥ 2.a^2.bc + 2.b^2.ca + 2.c^2.ab ( BĐT Côsi )
= 2.abc(a + b + c)
Do đó a^4 + b^4 + c^4 ≥ (a + b + c)abc
Dấu " = " xảy ra khi a = b = c.
<=> (a + b + c)(a² + b² + c² - ab - bc - ca) = 0
Hoặc a + b + c = 0
Hoặc (a² + b² + c² - ab - bc - ca) = 0
TH1: a + b + c = 0 => a = -(b + c); b = -( a + c); c = -( a + b)
=> A = [1 - (b +c)/b][1 - (a + c)/c][1 - (a + b)/a]
=> A =[1 - 1 - c/b][1 - 1 - a/c][1 - 1 - b/a]
=> A = (-c/b)(-a/c)(-b/a) = -1
TH2: (a² + b² + c² - ab - bc - ca) = 0 <=> (a - b)² +(b - c)² + (c - a)² = 0
=> a - b = b - c = c - a = 0 hay a = b = c
=> A = (1 + 1)(1 + 1)(1+ 1) = 8
a+b+c=1; a>0; b>0; c>0
=>a>=b>=c>=0
=>a(a-c)>=b(b-c)>=0
=>a(a-b)(a-c)>=b(a-b)(b-c)
=>a(a-b)(a-c)+b(b-a)(b-c)>=0
mà (a-c)(b-c)*c>=0 và c(c-a)(c-b)>=0
nên a(a-b)(a-c)+b(b-a)(b-c)+(a-c)(b-c)*c>=0
=>a^3+b^3+c^3+3acb>=a^2b+a^2c+b^2c+b^2a+c^2b+c^2a
=>a^3+b^3+c^3+6abc>=(a+b+c)(ab+bc+ac)
=>a^3+b^3+c^3+6abc>=(ab+bc+ac)
mà a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)
nên 2(a^3+b^3+c^3)+3acb>=a^2+b^2+c^2>=ab+bc+ac(ĐPCM)
\(a^3+b^3+abc\ge ab\left(a+b+c\right)\\ \Leftrightarrow a^3+b^3+abc-ab\left(a+b+c\right)\ge0\\ \Leftrightarrow a^3+b^3+ab\left(c-a-b-c\right)\ge0\\ \Leftrightarrow a^3+b^3-ab\left(a+b\right)\ge0\\ \Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\\ \Leftrightarrow\left(a+b\right)\left(a^2-2ab+b^2\right)\ge0\\ \Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\left(luôn.đúng\right)\)
Do \(0\le a,b,c\le1\)
nên\(\left\{{}\begin{matrix}\left(a^2-1\right)\left(b-1\right)\ge0\\\left(b^2-1\right)\left(c-1\right)\ge0\\\left(c^2-1\right)\left(a-1\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2b-b-a^2+1\ge0\\b^2c-c-b^2+1\ge0\\c^2a-a-c^2+1\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2b\ge a^2+b-1\\b^2c\ge b^2+c-1\\c^2a\ge c^2+a-1\end{matrix}\right.\)
Ta cũng có:
\(2\left(a^3+b^3+c^3\right)\le a^2+b+b^2+c+c^2+a\)
Do đó \(T=2\left(a^3+b^3+c^3\right)-\left(a^2b+b^2c+c^2a\right)\)
\(\le a^2+b+b^2+c+c^2+a\)\(-\left(a^2+b-1+b^2+c-1+c^2+a-1\right)\)
\(=3\)
Vậy GTLN của T=3, đạt được chẳng hạn khi \(a=1;b=0;c=1\)
Rõ ràng trong hai số a, b, c tồn tại một số chẵn (Vì nếu a, b, c đều lẻ thì a3 + b3 + c3 là số lẻ, không chia hết cho 14).
Ta lại có \(a^3;b^3;c^3\equiv0;1;-1\).
Do đó nếu a, b, c đều không chia hết cho 7 thì \(a^3;b^3;c^3\equiv1;-1\left(mod7\right)\Rightarrow a^3+b^3+c^3⋮̸7\).
Làm tiếp: Suy ra trong ba số a, b, c có ít nhất một số chia hết cho 7 \(\Rightarrow abc⋮7\).
Vậy abc chia hết cho 14.
bài này hình như có điều kiện \(a,b,c\ge1\)
Bài toán phụ \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)(bạn tự chứng minh nhé biến đổi tương đương là thấy mà)
Ta có: \(\frac{1}{1+a^3}+\frac{1}{1+b^3}+\frac{1}{1+c^3}+\frac{1}{1+abc}\ge\frac{2}{1+\sqrt{a^3b^3}}+\frac{2}{1+\sqrt{abc^4}}\ge\frac{4}{1+\sqrt[4]{a^4b^4c^4}}=\frac{4}{1+abc}\)
\(\Leftrightarrow\frac{1}{1+a^3}+\frac{1}{1+b^3}+\frac{1}{1+c^3}\ge\frac{3}{1+abc}\)(đpcm)
\( \dfrac{1}{{1 + {a^3}}} + \dfrac{1}{{1 + {b^3}}} + \dfrac{1}{{1 + {c^3}}} \ge \dfrac{3}{{1 + abc}}\\ \Leftrightarrow \dfrac{1}{{1 + {a^3}}} + \dfrac{1}{{1 + {b^3}}} + \dfrac{1}{{1 + {c^3}}} + \dfrac{1}{{abc}} \ge \dfrac{4}{{1 + abc}} \)
Ta có:
\(\dfrac{1}{{1 + {a^3}}} + \dfrac{1}{{1 + {b^3}}} + \dfrac{1}{{1 + {c^3}}} + \dfrac{1}{{1 + abc}} \ge \dfrac{2}{{1 + \sqrt {{a^3}{b^3}} }} + \dfrac{2}{{1 + \sqrt {ab{c^4}} }} \ge \dfrac{4}{{1 + \sqrt {{a^3}{b^3}\sqrt {ab{c^4}} } }} = \dfrac{4}{{1 + abc}}\)
Suy ra: \(\dfrac{1}{{1 + {a^3}}} + \dfrac{1}{{1 + {b^3}}} + \dfrac{1}{{1 + {c^3}}} \ge \dfrac{3}{{1 + abc}}\)
Vậy BĐT được chứng minh. Đẳng thức xảy ra khi và chỉ khi $a=b=c=1$
Anh đã chỉnh câu hỏi của em dưới dạng công thức. Những lần sau đặt câu hỏi nhớ ghi dưới dạng công thức cho dễ nhìn, dễ hiểu để các bạn hỗ trợ em nhé! Chúc em học tốt cùng hoc24.