Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì p là số nguyên tố , p > 3
nên p = 3k + 1 hoặc p = 3q + 2 (k;q \(\inℕ^∗\) )
Với p = 3k + 1
thì 8p2 + 1 = 8.(3k + 1)2 + 1 = 8.(9k2 + 6k + 1) + 1
= 72k2 + 48k + 9 = 3(24k2 + 16k + 3) \(⋮3\)
=> 8p2 + 1 là hơp số (loại)
Với p = 3q + 2
8p2 + 1 = 8(3q + 2)2 + 1 = 72q2 + 96q + 33 \(⋮3\)
=> p = 3q + 2 (loại)
Vậy không tồn tại p để thỏa mãn điều kiện đề bài
p=2 thì 8p-1 = 15 => loại
p=3 thì 8p-1=23 ; 8p+1=25 là hợp số => chọn
p>3 thì p không chia hết cho 3
p chia 3 dư 2 thì 8p-1 chia hết cho 3 nên loại
=> p chia 3 dư 1 => 8p+1 chia hết cho 3 ; là hợp số
Nếu \(p=2\Rightarrow8p-1=15\) là hợp số \(\left(ktm\right)\)
Nếu \(p=3\Rightarrow8p-1=23\)là số nguyên tố và \(8p+1=25\)là hợp số \(\left(tm\right)\)
Nếu \(p>3\Rightarrow p=3k+1;p=3k+2\left(k\inℕ\right)\)
Với \(p=3k+1\left(k\inℕ\right)\Rightarrow8p+1=8\left(3k+1+1\right)=24k+9=3\left(8k+3\right)>3\)
và \(⋮3\)nên \(8p+1\)là hợp số
Với \(p=3k+2\left(k\inℕ\right)\Rightarrow8p-1=8\left(3k+2\right)-1=24k+15=3\left(8k+5\right)>3\)và \(⋮3\)nên \(8p-1\)là hợp số. ( Vô lí )
Vậy \(8p+1\)là hợp số khi \(8p-1\)và \(p\)là các số nguyên tố
dem p chia cho 3 se co 3 kha nang xay ra ve so du. so du co the la 1 trong cac so 0,1,2
xet 3truong hop:...
Bn thíu đìu kịn p > 3 nha
Xét 3 số tự nhiên liên tiếp: 8p - 1; 8p; 8p + 1, trong 3 số này có 1 số chia hết cho 3
Do p nguyên tố > 3 => p không chia hết cho 3 => 8p không chia hết cho 3 mà 8p - 1 nguyên tố > 3 => 8p - 1 không chia hết cho 3
=> 8p + 1 chia hết cho 3
Mà 1 < 3 < 8p + 1 => 8p + 1 là hợp số (đpcm)
* Nếu p = 3 => 8p-1 = 23: nguyên tố, 8p+1 = 25 là hợp số : thỏa mãn
* Xét: p # 3
Thấy: p-1, p, p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3
p nguyên tố khác 3 nên p-1 hoặc p+1 chia hết cho 3 => (p-1)(p+1) chia hết cho 3
Vậy:
(8p-1)(8p+1) = 64p²-1 = 63p² + p² -1 = 3.21p² + (p-1)(p+1) chia hết cho 3
vì 8p-1 là số nguyên tố lớn hơn 3 => 8p+1 chia hết cho 3, hiển nhiên 8p+1 > 3
=> 8p+1 là hợp số
Nếu p = 3 => 8p-1 = 23: nguyên tố, 8p+1 = 25 là hợp số : thỏa
* Xét: p # 3
Thấy: p-1, p, p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3
p nguyên tố khác 3 nên p-1 hoặc p+1 chia hết cho 3 => (p-1)(p+1) chia hết cho 3
Vậy:
(8p-1)(8p+1) = 64p²-1 = 63p² + p² -1 = 3.21p² + (p-1)(p+1) chia hết cho 3
vì 8p-1 là số nguyên tố lớn hơn 3 => 8p+1 chia hết cho 3, hiển nhiên 8p+1 > 3
=> 8p+1 là hợp số
----------
Cách khác:
phân tích: 8p-1 = 9p - (p+1) ; 8p+1 = 9p - (p-1)
xét 3 số nguyên liên tiếp: p-1, p, p+1
p và p+1 không thể chia hết cho 3 (xét riêng p = 3 như trên)
=> p-1 chia hết cho 3 => 8p+1 = 9p - (p-1) chia hết cho 3
Nếu p = 3 suy ra 8p - 1 = 23 là số nguyên tố ; 8p + 1 = 25 là hợp số ( thoả mãn đề bài )
Nếu p \(\ne\)3 ta có :
p - 1 ; p ; p + 1 là ba số nguyên liên tiếp nên phải có một số chia hết cho 3
Mà p \(\ne\)3 nên p - 1 hoặc p + 1 chia hết cho 3 suy ra (p-1).(p+1) \(⋮\)3
Suy ra : (8p-1).(8p+1) = 64\(p^2\)- 1 = 63\(p^2\)+ \(p^2\)- 1 = 3.21.\(p^2\)+ (p-1).(p+1) \(⋮\)3
Vậy 8p+1 là hợp số
* Nếu p = 3 => 8p-1 = 23: nguyên tố, 8p+1 = 25 là hợp số : thỏa
* Xét: p # 3
Thấy: p-1, p, p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3
p nguyên tố khác 3 nên p-1 hoặc p+1 chia hết cho 3 => (p-1)(p+1) chia hết cho 3
Vậy:
(8p-1)(8p+1) = 64p²-1 = 63p² + p² -1 = 3.21p² + (p-1)(p+1) chia hết cho 3
vì 8p-1 là số nguyên tố lớn hơn 3 => 8p+1 chia hết cho 3, hiển nhiên 8p+1 > 3
=> 8p+1 là hợp số
----------
Cách khác:
phân tích: 8p-1 = 9p - (p+1) ; 8p+1 = 9p - (p-1)
xét 3 số nguyên liên tiếp: p-1, p, p+1
p và p+1 không thể chia hết cho 3 (xét riêng p = 3 như trên)
=> p-1 chia hết cho 3 => 8p+1 = 9p - (p-1) chia hết cho 3