K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2019

Hỏi đáp ToánhahaCâu c mình chưa nghĩ nên để sau nha bạn!

9 tháng 6 2020

Có thể giải gúp tôi được không / 

Con mua 17 kg cam , mẹ mua gấp 3 lần số cam của con . Hỏi cả hai mẹ con mua được bao nhiêu kg cam ? 

a) Ta có ABAB và ACAC là tiếp tuyến tại AA và BB của (O)(O)

⇒AB⊥OB⇒AB⊥OB và AC⊥OCAC⊥OC

Xét AOB và ΔAOCAOB và ΔAOC có:

OB=OC(=R)OB=OC(=R)

ˆABO=ˆACO=90oABO^=ACO^=90o

OAOA chung

⇒ΔAOB=ΔAOC⇒ΔAOB=ΔAOC (ch-cgv)

⇒AB=AC⇒AB=AC và có thêm OB=OC⇒AOOB=OC⇒AO là đường trung trực của BCBC

Mà H là trung điểm của BC

⇒A,H,O⇒A,H,O thẳng hàng

Tứ giác ABOCABOC có ˆABO+ˆACO=90o+90o=180oABO^+ACO^=90o+90o=180o

⇒A,B,C,O⇒A,B,C,O cùng thuộc đường tròn đường kính OAOA.

15 tháng 3 2018

Câu này khó thât đấy nhưng mình giải ra rồi nek 

Hình bạn tự vẽ nha

Ta có CH vuông góc AD

Và BD vuông góc AD( góc D nội tiếp chắn nữa đường tròn )

=> CH // BD

=> Góc HCA = Góc DBA ( đồng vị)

Lại có Góc AND = Góc ABD ( cùng chắn cũng AD)

Trong tứ giác AECN có 

Góc AND= góc ABD 

Vì 2 góc bằng nhau cùng nhìn một cạnh

=> Bốn điểm A,E,N,C thuộc một đường tròn

Hay tứ giác AECN nội tiếp

2 tháng 5 2021

a, ta có \(\widehat{ADB}\)là góc nội tiếp chắn nửa đường tròn => \(\widehat{ADB}=90^0\)hay \(\widehat{EDB}=90^0\)

Xét tứ giác BDEH có : 

\(\widehat{EHB}=90^0\left(CH\perp AB\right)\)

\(\widehat{EDB}=90^0\left(cmt\right)\)

=> tugiac BDEH noi tiep

b,

ta có \(\widehat{ADC}=\widehat{ABC}\)( BDEH noitiep cmt)

mà \(\widehat{ABC}+\widehat{CAB}=90^0\)(góc ACB=90 độ, góc nt chắn nửa đg tròn)

  \(\widehat{ACH}+\widehat{CAB}=90^0\)( góc AHC=90 độ vì  CH vuông với AB)

=> \(\widehat{ABC}=\widehat{ACH}\)

=> \(\widehat{ACH}=\widehat{ADC}\left(=\widehat{ABC}\right)\)hay góc ADC= góc ACE

Xét tam giác ACE và tam giác ADC

\(\widehat{ADC}=\widehat{ACE}\left(cmt\right)\)

góc CAD chung

=> tam giác ACE đồng dạng với tam giác ADC (g-g)

=> \(\frac{AC}{AD}=\frac{AE}{AC}\)

=> \(AC^2=AD.AE\)(1)

Tam giác ABC vuông tại C có AH là đường cao

=> BC2= BH.BA  (hethucluong) (2)        

(1);(2) => \(AC^2+BC^2=AE.AD+BH.BA\)

mà AC2+ BC2= AB2 ( pytago trong tam giác ABC vuông ở C)

=> \(AB^2=AE.AD+BH.BA\)