Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho các số thực x , y thỏa mãn
x2 + 3xy + 4y2 \(\le\)\(\frac{7}{2}\)
Chứng minh rằng x + y \(\le\) 2
Bài 1 :
a/ \(x^2-7x+6=0\)
\(\Leftrightarrow x^2-6x-x+6=0\)
\(\Leftrightarrow x\left(x-6\right)-\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)
Vậy....
b/ \(x^2-10x+9=0\)
\(\Leftrightarrow x^2-9x-x+9=0\)
\(\Leftrightarrow x\left(x-9\right)-\left(x-9\right)=0\)
\(\Leftrightarrow\left(x-9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-9=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=1\end{matrix}\right.\)
Vậy...
c/ \(x^2+9x+8=0\)
\(\Leftrightarrow x^2+8x+x+8=0\)
\(\Leftrightarrow\left(x+8\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+8=0\\x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=-1\end{matrix}\right.\)
Vậy ...
d/ \(x^2-11x+10=0\)
\(\Leftrightarrow x^2-11x+10=0\)
\(\Leftrightarrow x^2-x-10x+10=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-10=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=10\end{matrix}\right.\)
Vậy...
Bài 2 :
Ta có :
\(\frac{2x-y}{x+y}=\frac{2}{3}\)
\(\Leftrightarrow3\left(2x-y\right)=2\left(x+y\right)\)
\(\Leftrightarrow6x-3y=2x+2y\)
\(\Leftrightarrow6x-2x=2y+3y\)
\(\Leftrightarrow4x=5y\)
\(\Leftrightarrow\frac{x}{y}=\frac{5}{4}\)
Vậy....
Bài 3 : không hiểu đề lắm ???!!!!
Bài 4 :
Ta có :
\(\frac{x}{y^2}=2\Leftrightarrow x=2y^2\left(1\right)\)
Thay (1) ta có :
\(\frac{x}{y}=16\)
\(\Leftrightarrow\frac{2y^2}{y}=16\)
\(\Leftrightarrow2y=16\)
\(\Leftrightarrow y=8\Leftrightarrow x=128\)
Vậy...
Ta có:
\(\frac{x}{z}=\frac{z}{y}\)
\(\Rightarrow\left(\frac{x}{z}\right)^2=\left(\frac{z}{y}\right)^2\)
\(\Rightarrow\frac{x^2}{z^2}=\frac{z^2}{y^2}\)
Áp dụng tích chất dãy tỉ số bằng nhau ta được:
\(\frac{x^2}{z^2}=\frac{z^2}{y^2}=\frac{x^2+z^2}{z^2+y^2}\left(1\right)\)
Mà \(\frac{x^2}{z^2}=\frac{x}{z}.\frac{x}{z}=\frac{x}{z}.\frac{z}{y}=\frac{x}{y}\left(2\right)\) (vì \(\frac{x}{z}=\frac{z}{y}\))
Từ \(\left(1\right)\)và \(\left(2\right)\)suy ra:
\(\frac{x^2+z^2}{y^2+z^2}=\frac{x}{y}\)
Vậy với \(\frac{x}{z}=\frac{z}{y}\)thì \(\frac{x^2+z^2}{y^2+z^2}=\frac{x}{y}\)
Ta có: \(\frac{x}{z}=\frac{z}{y}\)=>\(z^2=xy\)
Thay \(z^2=xy\) vào \(\frac{x^2+z^2}{y^2+z^2}=\frac{x^2+xy}{y^2+xy}=\frac{x\cdot\left(x+y\right)}{y\cdot\left(y+x\right)}=\frac{x}{y}\)(điều phải chứng minh)
=>z^2=xy(t/c)
=>x/y=x(x+y)/y(x+y)
=(x^2+xy)/(y^2+xy))
=(x^2+z^2)/(y^2+z^2)
Đặt \(\frac{x}{y}=\frac{m}{n}=k\Rightarrow\hept{\begin{cases}x=yk\\m=nk\end{cases}}\)
Khi đó : \(\frac{7x^2+3xy}{11x^2-8y^2}=\frac{7y^2k^2+3y^2k}{11y^2k^2-8y^2}=\frac{y^2k\left(7k+3\right)}{y^2\left(11k^2-8\right)}=\frac{k\left(7k+3\right)}{11k^2-8}\left(1\right);\)
\(\frac{7m^2+3mn}{11m^2-8n^2}=\frac{7n^2k^2+3n^2k}{11n^2k^2-8n^2}=\frac{n^2k\left(7k+3\right)}{n^2\left(11k^2-8\right)}=\frac{k\left(7k+3\right)}{11k^2-8}\left(2\right)\)
Từ (1) và (2) => đpcm