K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2017

a) = -3/7 . 5/11 + -3/7 . 6/11 + 9/7

   = -3/7. ( 5/11 + 6/11 ) + 9/7

  = -3/7. 1 + 9/7

  = -3/7 + 9/7

  = 6/7

b) = 4/13 + 9/13 + -11/5 + 6/5 - 3/4

    = 13/13 + -5/5 - 3/4

    = 1 + (-1) - 3/4

    = 0 - 3/4

    = -3/4

c) = -19/17. 4/7 + 19/17. -3/7 + 19/17

    = 19/17. -4/7 + 19/17. -3/7 + 19/17.1

    = 19/17.( -4/7 + -3/7 + 19/17

    = 19/17. -7/7 + 19/17

    = 19/17. (-1) + 19/17

    = -19/17 + 19/17

    = 0

tk mk nha,thanks

22 tháng 4 2016

Viết thử lại thành tổng của các số dương là phát hiện ra lun ấy mà

Bài này khá dễ nên mình xin phép ko giải nữa

24 tháng 3 2016

ta có: \(\frac{a}{b}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\) 

ta ghép thành 3 cặp như sau :

\(\frac{a}{b}=\left(1+\frac{1}{6}\right)+\left(\frac{1}{2}+\frac{1}{5}\right)+\left(\frac{1}{3}+\frac{1}{4}\right)\) 

\(\frac{a}{b}=\frac{7}{1.6}+\frac{7}{2.5}+\frac{7}{3.4}\)

quy đồng mẫu tất cả ta đc

\(\frac{a}{b}=\frac{7.a+7.b+7.c}{1.2.3.4.5.6}\) ( với a,b,c E N )

vì 7 là số nguyên tố nên khi rút gọn thì tử số vẫn là 7

vậy a chia hết cho 7 

11 tháng 7 2016

có ai giúp mình với

12 tháng 9 2021

a ) 

Theo bài ra: (a - 4) chia hết cho 5 => (a - 4) + 20 chia hết cho 5 => a + 16 chia hết cho 5

(a - 5) chia hết cho 7 => (a - 5) + 21 chia hết cho 7 => a + 16 chia hết cho 7

(a - 6) chia hết cho 11 => (a - 6) + 22 chia hết cho 11 => a + 16 chia hết cho 11 

=> a + 16 thuộc BC(5; 7; 11) 

Mà BCNN(5; 7; 11) = 385

=> a + 16 thuộc B(385) = {0; 385; 770; ...}

=> a thuộc {-16; 369; 754;...}

Vì a là số tự nhiên nhỏ nhất

=> a = 369 

b ) \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}.\)

Ta có : 

\(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2.3}\)

.....................

\(\frac{1}{2012^2}=\frac{1}{2012.2012}< \frac{1}{2011.2012}\)

Ta có :

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2011.2012}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2011}-\frac{1}{2012}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}< 1-\frac{1}{2012}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}.< \frac{2011}{2012}\)

Mà \(\frac{2011}{2012}< 1\)

\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}< 1\)

12 tháng 9 2021

\(b)\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}\)

\(< \)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{2010.2011}+\frac{1}{2011.2012}\)

\(< \)\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2011}-\frac{1}{2012}\)

\(< \)\(1-\frac{1}{2012}\)\(=\frac{2011}{2012}< 1\)

Vậy Biểu thức    \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}\)\(< 1\)

1 tháng 5 2015

Câu 4:

Ta có:

\(\frac{1}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\)

\(\frac{1}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4}\)

\(...\)

\(\frac{1}{98.99.100}=\frac{1}{98.99}-\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

\(=\frac{1}{1.2}-\frac{1}{99.100}=\frac{1}{k}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Rightarrow\frac{1}{k}=1\Rightarrow k=1:1=1\)