K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2018

a, Theo hệ thức viét ta có : 

Vì x1=1 và x2=-1 là 2 nghiệm của pt : f(x)=ax^2+bx+c nên : 

\(x_1.x_2=\frac{c}{a}=-1\cdot1=-1\) => \(a=-c\) 

Vậy a và c là 2 số đối nhau 

b, Ta có : f(x-1)=a(x-1)^2+b(x-1)+c

=> \(f\left(x\right)-f\left(x-1\right)=ax^2+bx+c-\left[a\left(x-1\right)^2+b\left(x-1\right)+c\right]\)

\(=2ax+a+b\)

Mặt khác : f(x)-f(x-1)=x nên : \(2ax+a+b=x\)

<=> \(x\left(2a-1\right)+a+b=0\)

Do \(a\ne0\) ( đk của pt bậc 2 ) nên a=1/2 và a+b=0 ( nghiệm thoả mãn ) 

=> \(f\left(x\right)=\frac{1}{2}x^2-\frac{1}{2}x+c\)

Áp dụng kết quả trên ta có : \(f\left(1\right)-f\left(0\right)=1\)

............

 \(f\left(n\right)-f\left(n-1\right)=n\) 

=> \(1+2+3+...+n=f\left(1\right)-f\left(0\right)+f\left(2\right)-f\left(1\right)+...+f\left(n\right)-f\left(n-1\right)\)

\(=f\left(n\right)-f\left(0\right)=\frac{1}{2}n^2-\frac{1}{2}n+c-\left(0\cdot a+0\cdot b+c\right)=\frac{1}{2}n^2-\frac{1}{2}n\)

7 tháng 7 2017

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+..........+\frac{1}{49.50}\)

\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..........+\frac{1}{49}-\frac{1}{50}\)

\(\Leftrightarrow A=1-\frac{1}{50}=\frac{49}{50}\)

cái kia tự tìm

3 tháng 8 2019

mk làm mất công lắm mong bạn tick

1)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\frac{x}{y}=\frac{9}{11}=\frac{x}{9}=\frac{y}{11}=\frac{x+y}{9+11}=\frac{60}{20}=3\) ( do \(x+y=20\) )

\(\Rightarrow\left\{{}\begin{matrix}x=3.9\\y=3.11\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=27\\y=33\end{matrix}\right.\)

Vậy : \(\left(x,y\right)=\left(27,33\right)\)

2)

a) Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{30}{10}=3\) ( do \(x+y+z=30\))

\(\Rightarrow\left\{{}\begin{matrix}x=3.2\\y=3.3\\z=3.5\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=6\\y=9\\z=15\end{matrix}\right.\)

Vậy : \(\left(x,y,z\right)=\left(6,9,15\right)\)

b) Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{2}=\frac{2y}{6}=\frac{3z}{15}\)

Theo tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{15}=\frac{x-2y+3z}{2-6+15}=\frac{38}{11}\)

Bạn tự tìm x,y,z phần này nhé, tại số xấu quá !

12 tháng 2 2018

xin các bạn đấy giúp mk đi xin các bạn mà

12 tháng 5 2016

http://olm.vn/hỏi-đáp/question/584545.html chờ xí tui thấy cái tên rồi giải cho bài 2

12 tháng 5 2016

2.

= 1/2.7 + 1/7.12 + 1/12.17 + ... + 1/2002.2007

= 1/2 - 1/7 + 1/7 - 1/12 + 1/12 - 1/17 + ... + 1/2002 - 1/2007

= 1/2 - 1/2007

= 2007/4014 - 2/4014

= 2005/4014

28 tháng 9 2016

2x = 5z suy ra x / 5 = z / 2 

x / 2 = y / 3

29 tháng 9 2016

còn một phần nữa

5 tháng 6 2016
  • Đặt \(S=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2008}{3^{2008}}\)(1)
  • Ta có: \(\frac{1}{3}S=\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+...+\frac{2007}{3^{2008}}+\frac{2008}{3^{2009}}\)(2)
  • Trừ vế với vế 2 đửng thức (1) và (2) ta có:

\(S-\frac{1}{3}S=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}-\frac{2008}{3^{2009}}<\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)(3)

  • Đặt \(P=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)
  • \(\left(1-\frac{1}{3}\right)P=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}-\left(\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2008}}+\frac{1}{3^{2009}}\right)=\frac{1}{3}-\frac{1}{3^{2009}}<\frac{1}{3}\)
  • \(\frac{2}{3}P<\frac{1}{3}\Rightarrow P<\frac{1}{2}\)(4)
  • Từ (3) và (4) 

\(\Rightarrow\frac{2}{3}S<\frac{1}{2}\Rightarrow S<\frac{3}{4}\)(ĐPCM)