Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BFED có
ED//BF
FE//BD
Do đó: BFED là hình bình hành
Xét ΔABC có
D là trung điểm của BC
DE//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
E là trung điểm của AC
EF//CB
Do đó: F là trung điểm của AB
Xét ΔCDE và ΔEFA có
CD=EF
DE=FA
CE=EA
Do đó: ΔCDE=ΔEFA
b: Gọi ΔABC có F là trung điểm của AB,E là trung điểm của AC
Trên tia FE lấy điểm E sao cho E là trung điểm của FK
Xét tứ giác AFCK có
E là trung điểm của AC
E là trung điểm của FK
Do đó: AFCK là hình bình hành
Suy ra: AF//KC và KC=AF
hay KC//FB và KC=FB
Xét tứ giác BFKC có
KC//FB
KC=FB
Do đó: BFKC là hình bình hành
Suy ra: FE//BC(ĐPCM)
a, Xét ∆ ABC có đg ttrực của AB và AC giao nhau tại O
➡️O là tâm đg tròn ngoại tiếp ∆ ABC
➡️AO là đg ttrực của BC (đpcm)
b, Gọi giao điểm của AO là BC là H.
Xét ∆ ABC cân tại A
➡️AO là đg ttrực đồng thời là đg phân giác
➡️Góc BAO = góc CAO = góc BAC ÷ 2 = 120° ÷ 2 = 60°
Vì O là tâm đg tròn ngoại tiếp ∆ ABC (cmt)
➡️OA = OB = OC
Xét ∆ ABO cân tại O (OA = OB) có góc BAO = 60°
➡️∆ ABO đều
➡️BH là đg cao đồng thời là ttuyến
➡️BH là đg ttuyến của AC
mà E là giao của ttrực AB và ttuyến AO
➡️E là trọng tâm ∆ ABO
C/m tương tự ta có F là trọng tâm ∆ ACO (đpcm)
c, Xét ∆ ABC cân tại A
Góc ABC = góc ACB = (180° - 120°) ÷ 2 = 30°
Gọi OM và ON lần lượt là đg ttrực của AB và AC
Vì AB = AC ➡️AM = BM = AN = CN
Xét ∆ vuông BEM và ∆ CFN có:
Góc M = góc N = 90°
BM = CN (cmt)
Góc ABC = góc ACB (cmt)
➡️∆ vuông BEM = ∆ vuông CFN (ch - gn)
➡️BE = CF ( 2 cạnh t/ư) (1)
ME = NF (2 cạnh t/ư)
Xét ∆ vuông BEM có góc ABC = 30°
➡️Góc BEM = 90° - 30° = 60°
mà góc BEM đối đỉnh với góc OEH
➡️Góc BEM = góc OEH = 60°
Xét ∆ OBE có góc EBO = góc EOB = 60° ÷ 2 = 30°
➡️∆ OBE cân tại E
➡️BE = OE
Ta có: OE + ME = OM
OF + NF = ON
mà OM = ON, ME = NF
➡️OE = OF
Xét ∆ OEF cân tại O (OE = OF) có góc OEH = 60°
➡️∆ OEF đều
➡️OE = EF
mà OE = BE (cmt)
➡️BE = EF (2)
Từ (1) và (2) ➡️BE = EF = CF (đpcm)
Hok tốt~
P/s : ôi mỏi tay quá k mk với~
Ta có: D nằm trên đường trung trực của AB
nên DA=DB
=>ΔDAB cân tại D
=>\(\widehat{ADE}=2\cdot\widehat{B}=60^0\)
Ta có: E nằm trên đường trung trực của AC
nên EA=EC
=>ΔEAC cântại E
=>\(\widehat{AED}=2\cdot\widehat{C}=60^0\)
Xét ΔADE có \(\widehat{ADE}=\widehat{AED}=60^0\)
nên ΔADE đều
a) ΔABC vuông tại A
Áp dụng định lý Pi-ta-go ta có:
BC2 = AC2+AB2
⇒BC2-AC2=AB2
⇒100-64=AB2
⇒36=AB
⇒AB=6(cm)
b) Xét ΔAIB và ΔDIB có:
góc BAI = góc BDI (= 90 độ)
Chung IB
góc IBA = góc IBD (gt)
⇒ ΔAIB = ΔDIB (ch-gn)
⇒ BA = BD (2 cạnh tương ứng)
c) Gọi giao BI và AD là F
Xét ΔABF và ΔDBF có:
AB = DB (cmb)
góc ABF = góc DBF (gt)
chung BF
⇒ ΔABF = ΔDBF (c.g.c)
⇒ FA = FD (2 cạnh tương ứng)
góc BFA = góc BFD (2 góc tương ứng) mà góc góc này kề bù nên góc BFA = góc BFD = 90 độ ⇒ BF⊥AD
Vì FA = FD, BF⊥AD ⇒ BI là đường trung trực của AD
d) Gọi giao của BI và EC là G
Xét ΔEBC có: CA⊥BE, ED⊥BC nên I là trọng tâm của ΔEBC nên BG là đường cao thứ 3 của ΔEBC ⇒ BG⊥EC ⇒ BI⊥EC
a: Xét ΔABC và ΔBAE có
AB chung
\(\widehat{ABC}=\widehat{BAE}\)
BC=AE
Do đó: ΔABC=ΔBAE
b: Xét ΔCDE và ΔBDA có
\(\widehat{CDE}=\widehat{BDA}\)
DC/DB=DE/DA
Do đó: ΔCDE\(\sim\)ΔBDA
Suy ra: \(\widehat{DCE}=\widehat{DBA}\)
=>CE//AB
a: Xet ΔABD vuông tại B và ΔAHD vuông tại H có
AD chung
góc BAD=góc HAD
=>ΔABD=ΔAHD
b; AB=AH
DB=DH
=>AD là trung trực của BH
c: Xet ΔDBI vuông tại B và ΔDHC vuông tại H có
DB=DH
góc BDI=góc HDC
=>ΔBDI=ΔHDC
=>DI=DC
=>ΔDIC cân tại D
d: Xét ΔAIC có AB/BI=AH/HC
nên BH//IC
e: AD vuông góc BH
BH//IC
=>AD vuông góc IC
a) Tứ giác ANHM có 3 góc vuông : AMH ; MAN ; ANH nên là hình chữ nhật
b) Hình chữ nhật ANHM có AH cắt MN tại trung điểm mỗi đường nên OA =\(\frac{AH}{2};ON=\frac{MN}{2}\)mà AH = MN nên OA = ON
\(\Rightarrow\Delta OAN\)cân tại O (1)
Ta lại có :\(\Delta ABC,\Delta AHC\)lần lượt vuông tại A,H có\(\widehat{B}+\widehat{C}=\widehat{HAC}+\widehat{C}=90^0\Rightarrow\widehat{B}=\widehat{OAN}=\widehat{ONA}\)(do 1)
mà\(\widehat{ONA}+\widehat{ONC}=180^0\)(kề bù).Vậy tứ giác BCNM có\(\widehat{B}+\widehat{MNC}=180^0\Rightarrow\widehat{C}+\widehat{BMN}=180^0\)
c)\(\Delta ANM,\Delta ABC\)cùng vuông tại A có\(\widehat{B}=\widehat{MNA}\Rightarrow\Delta ANM~\Delta ABC\left(g-g\right)\Rightarrow\frac{AN}{AM}=\frac{AB}{AC}\)=> AM.AB = AN.AC
d)\(\Delta ABC\)vuông tại A có I là trung điểm BC nên trung tuyến AI =\(\frac{BC}{2}\)mà BI =\(\frac{BC}{2}\)nên AI = BI
\(\Rightarrow\Delta ABI\)cân tại I =>\(\widehat{BAI}=\widehat{B}=\widehat{MNA}\)mà\(\Delta AMN\)vuông tại A có\(\widehat{AMN}+\widehat{MNA}=90^0\)
Gọi giao điểm AI và MN là P thì\(\Delta AMP\)có \(\widehat{MAP}+\widehat{AMP}=90^0\)nên\(\Delta AMP\)vuông tại P => AI _|_ MN