K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2019

Tự vẽ hình nha!

Xét tam giác BMK và tam giác CNK có:

BM=CN (gt)

Góc BKM=góc CKN (hai góc đối đỉnh)

MK=NK (K là trung điểm MN)

=> tam giác BMK=tam giác CNK (c.g.c)

=> BK=CK

=> K là trung điểm BC

=> B,K,C thẳng hàng.

29 tháng 4 2019

a, xét tam giác CMA và tam giác BMD có : AM = MD (gt)

BM = CM do AM là trung tuyến (gt)

góc CMA = góc BMD (đối đỉnh)

=> tam giác CMA = tam giác BMD (c - g - c)

=> BD = AC (đn)

1: Xet ΔMDB vuông tại D và ΔNEC vuông tại E có

BD=CE
góc MBD=góc NCE

=.ΔMDB=ΔNEC

=>DM=EN

2: Xét tứ giác MDNE có

MD//NE

MD=NE

=>MDNE là hình bình hành

=>MN cắt DE tại trung điểm của mỗi đường và ME//ND

 

a) Xét ΔABN và ΔACM có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAN}\) chung

AN=AM(gt)

Do đó: ΔABN=ΔACM(c-g-c)

Suy ra: BN=CM(hai cạnh tương ứng)

b) Xét ΔAHB và ΔAHC có 

AB=AC(ΔABC cân tại A)

AH chung

HB=HC(H là trung điểm của BC)

Do đó: ΔAHB=ΔAHC(c-c-c)

Suy ra: \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)

nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)

hay AH⊥BC(đpcm)

c) Ta có: AH⊥BC(cmt)

mà H là trung điểm của BC(gt)

nên AH là đường trung trực của BC

⇔EH là đường trung trực của BC

⇔EB=EC(Tính chất đường trung trực của một đoạn thẳng)

Xét ΔEBC có EB=EC(cmt)

nên ΔEBC cân tại E(Định nghĩa tam giác cân)

20 tháng 2 2021

Cảm ơn ạ =))

17 tháng 7 2017

a)Ta có:\(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)

  Mà \(\widehat{ACB}=\widehat{NCE}\)(2 góc đối đỉnh)

=>\(\widehat{ABC}=\widehat{NCE}\)

Xét tam giác MDB và tam giác NEC có:

\(\widehat{MDB}=\widehat{NEC}\)(= 90 độ)

BD=EC

\(\widehat{DBM}=\widehat{ECN}\)(cmt)

=>tam giác MDB = tam giác NEC(g-c-g)

=>DM=EN

b)Ta có:\(\widehat{DMI}+\widehat{DIM}=90độ\)(tam giác DIM vuông tại D)

           \(\widehat{ENI}+\widehat{NIE}=90độ\)(tam giác INE cân tại E)

\(\widehat{DIM}=\widehat{NIE}\)(2 góc đối đỉnh)=>\(\widehat{DMI}=\widehat{ENI}\)

Xét tam giác DMI và tam giác ENI có:

\(\widehat{IDM}=\widehat{CEN}\)(=90 độ)

DM=EN (theo phần a)

\(\widehat{DMI}=\widehat{ENI}\)(cmt)

=>tam giác DMI= tam giác ENI(g-c-g)

=>MI=IN

Vậy đường thẳng BC cát MN tại trung điểm I của MN

9 tháng 1 2020

Kết quả hình ảnh cho 1: Cho tam giác ABC cân tại A. Điểm D thuộc cạnh BC, điểm E thuộc tia đối của tia CB sao cho BD=CE. Các đường vuông góc với BC từ D và E cắt AB và AC ở M,N.

hình đây

17 tháng 2 2022

1) -Ta có: \(\widehat{MBD}=\widehat{ACB}\) (△ABC cân tại A) và \(\widehat{ACB}=\widehat{NCE}\) (đối đỉnh).

\(\Rightarrow\widehat{MBD}=\widehat{NCE}\)

-Xét △MDB và △NEC có:

\(\widehat{MBD}=\widehat{NCE}\) (cmt)

\(BD=CE\)

\(\widehat{MDB}=\widehat{NEC}=90^0\)

\(\Rightarrow\)△MDB=△NEC (g-c-g).

\(\Rightarrow DM=EN\) (2 cạnh tương ứng).

2) -Ta có: DM⊥BC tại D, EN⊥BC tại E nên DM//EN

-Xét △EMN và △DNM có:

\(DM=EN\) (cmt).

\(\widehat{DMN}=\widehat{ENM}\) (DM//EN và so le trong).

MN là cạnh chung.

\(\Rightarrow\)△EMN=△DNM (c-g-c).

\(\Rightarrow\widehat{EMN}=\widehat{DNM}\) (2 góc tương ứng) nên ME//DN.

3) -Có điểm I rồi kẻ thêm điểm I nữa hả bạn?

17 tháng 2 2022

3) -Mình nói tóm tắt:

-Bạn chứng minh AK⊥BC tại K rồi từ đó chứng minh △OKB=△OKC (c-g-c) suy ra OB=OC.

-Bạn chứng minh △IDM=△INE (g-c-g) từ đó suy ra DI=IN và góc OKB, góc OKC là 2 góc vuông.

-Bạn chứng minh △OIM=△OIN(c-g-c) suy ra OM=ON

-Bạn chứng minh △OBM=△OCN (c-c-c) suy ra góc OBM= góc OCN.

-Bạn chứng minh △OAB=△OAC (c-c-c) suy ra góc OBM=góc OCA.

Suy ra góc OCN=góc OCA mà 2 góc này là 2 góc kề bù nên cùng bằng 900.

-\(S_{AOC}=\dfrac{1}{2}AC.OC\)

\(S_{AOC}=S_{AKC}+S_{OKC}=\dfrac{1}{2}AK.KC+\dfrac{1}{2}OK.KC=\dfrac{1}{2}KC\left(AK+OK\right)=\dfrac{1}{2}KC.OA\)

\(\Rightarrow AC.OC=CK.OA\)

\(\Rightarrow\dfrac{AC^2}{CK^2}=\dfrac{OA^2}{OC^2}=\dfrac{OA^2-AC^2}{OC^2-CK^2}=\dfrac{OC^2}{OK^2}\)

\(\Rightarrow\dfrac{AC}{CK}=\dfrac{OC}{OK}\)

\(\Rightarrow\dfrac{AC}{OC}=\dfrac{CK}{OK}\)

\(\Rightarrow\dfrac{CK.OC}{OK}=AC\)

\(\Rightarrow\dfrac{OK}{CK.OC}=\dfrac{1}{AC}\)

\(\Rightarrow\dfrac{OK^2}{CK^2.OC^2}=\dfrac{1}{AC^2}\)

\(\Rightarrow\dfrac{OC^2-CK^2}{OC^2.CK^2}=\dfrac{1}{AC^2}\)

\(\Rightarrow\dfrac{1}{CK^2}-\dfrac{1}{OC^2}=\dfrac{1}{AC^2}\)